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Abstract

The conventional Navier-Stokes-Fourier equations with no-slip boundary conditions are unable

to capture the phenomenon of gas thermal transpiration. While kinetic approaches such as the

direct simulation Monte Carlo (DSMC) method and direct solution of the Boltzmann equation

can predict thermal transpiration, these methods are often beyond the reach of current com-

puter technology, especially for complex three-dimensional flows. In this brief report, we present

a new computationally efficient nonequilibrium thermal lattice Boltzmann model for simulating

temperature-gradient-induced flows. The excellent agreement between our model and kinetic ap-

proaches demonstrates the capabilities of the proposed lattice Boltzmann method.
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I. INTRODUCTION

In 1879, Osborne Reynolds discovered that a gas will move along a solid surface due to

inequalities of temperature and called the phenomenon thermal transpiration [1]. In the same

year, Maxwell [2] independently developed a theory to explain this effect. The phenomenon

of thermal transpiration (or thermal creep [3]) has recently been used to develop a MEMS-

based multi-stage Knudsen compressor [4, 5] where the gas moves from a cold chamber to

a hot chamber and builds up a pressure difference across the compressor element. Thermal

creep occurs in the opposite direction to the tangential heat flux, i.e., the flow is in the

direction of increasing temperature.

The physical explanation of thermal creep has been presented by Sone [6]. It is assumed

that equal numbers of molecules arrive at the wall from the hot and cold regions. Molecules

arriving from the hot region will have, on average, a higher velocity than those arriving

from the cold region. Since the molecules are reflected diffusively at the wall, the resultant

force on the wall due to the molecular collisions acts towards the cold region. An equal and

opposite force is felt by the gas molecules giving rise to a flow towards the hot region. Once

the fluid starts to creep along the wall, the moving fluid layer interacts with the stagnant

fluid layers adjacent to it, inducing a boundary layer.

Unfortunately, the flow within a Knudsen compressor is very complex involving internal

recirculation, vortices at the capillary exit and reverse thermal creep flow, leading to lower

than expected pressure ratios across the compressor. Although kinetic approaches such as

the direct simulation Monte Carlo (DSMC) method and direct solution of the Boltzmann

equation can predict thermal transpiration, these methods are only able to simulate a section

of the device and cannot be used to optimise the geometry of the entire compressor [5].

Moreover, kinetic methods are still beyond the reach of current computer technology for

large-scale three-dimensional simulations. In contrast, continuum-based methods such as

the Navier-Stokes-Fourier (NSF) equations are computationally efficient but are unable to

accurately capture thermal transpiration phenomena beyond the slip-flow regime. Here, we

report a nonequilibrium thermal lattice Boltzmann (LB) model which can satisfy the twin

demands of computational efficiency and numerical accuracy for simulating rarefied gas flows

in complex, industrially-relevant geometries.
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II. NONEQUILIBRIUM THERMAL LATTICE BOLTZMANN MODEL

Conventional LB models are unable to capture nonlinear constitutive behavior close to a

solid surface since they only retain velocity terms up to 2nd-order in the Hermite expansion

of the equilibrium distribution function, as reported by Shan et al. [7]. However, this is

not sufficient even for isothermal flows and it is usually necessary to retain terms up to 4th-

order in the Hermite expansion. Moreover, to describe nonequilibrium physics beyond the

level of the NSF equations, it is necessary to consider terms up to 5th-order in the Hermite

expansion. Inevitably, this leads to a large number of discrete velocities which increases the

computational cost and may give rise to numerical stability problems.

To overcome these difficulties, we make use of the different relaxation rates for momen-

tum and energy, and propose a different energy density distribution function g to describe

the evolution of the temperature field, as suggested by He et al. [8] for no-velocity-slip and

no-temperature-jump hydrodynamics. Using this approach, it is only necessary to retain up

to the 3rd-order moments of the energy density distribution function in order to describe

heat fluxes beyond the NSF level. As a consequence, our previously reported nonequilib-

rium isothermal lattice Boltzmann model [9] should be sufficiently accurate to describe the

evolution of the velocity field. In the present approach, as well as solving the evolution

equation for the particle number density, we solve an additional equation for the energy

density distribution function. The model relates the energy density distribution function to

the number density distribution function via a flexible Prandtl number.

The evolution equation for the velocity field has previously been described by Zhang et

al. [10]:

fk(x + ekδt, t + δt) − fk(x, t) = −1

τ
[fk(x, t) − f eq

k (x, t)] + δt
(eki − ui)Fi

c2
sρ

f eq
k (x, t), (1)

where fk is the distribution function for the number density at position x and time t, f eq
k

is the corresponding distribution function at equilibrium, eki is the lattice velocity, ui is the

macroscopic velocity, cs is the sound speed of the lattice fluid, ρ is the density, τ is the

nondimensional relaxation time for the number density distribution function, and δt is the

time step. The kinematic viscosity is calculated from ν = (τ − 0.5)c2
sδt. Following He et al.

[8], the energy density evolution equation is given by

gk(x + ekδt, t + δt) − gk(x, t) = − 1

τt

[gk(x, t) − geq
k (x, t)], (2)
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where gk is the distribution function for the energy density at position x and time t, geq
k is the

corresponding distribution function at equilibrium, and τt is the nondimensional relaxation

time for the energy density distribution function. The thermal diffusivity is given by α =

(τt − 0.5)c2
sδt and the Prandtl number is determined from Pr = (τ − 0.5)/(τt − 0.5) [10, 11].

Viscous heating effects have been neglected in the present model since they are usually

insignificant in low speed gas flows in micro/nano-devices.

Following the spirit of rational number approximation [12], we have developed a lattice

Boltzmann isothermal model beyond the level of the Navier-Stokes equations [9]. For a

two-dimensional, thirteen-velocity lattice model (D2Q13) [9], the lattice velocities are given

by

e0 = 0 ,

ek =

[

cos

(

(k − 1)π

2

)

, sin

(

(k − 1)π

2

)]

c , k = 1 − 4,

ek =

[

cos

(

(k − 5)π

2
+

π

4

)

, sin

(

(k − 5)π

2
+

π

4

)]√
2 c , k = 5 − 8, (3)

ek =

[

cos

(

(k − 1)π

2

)

, sin

(

(k − 1)π

2

)]

2c , k = 9 − 12,

where c =
√

2RT and R is the gas constant. The equilibrium distribution function can be

expressed as:

f eq
k = ρωk

[

1 +
ekiui

c2
s

+
(ekiui)

2

2c4
s

− uiui

2c2
s

+
(ekiui)

3

2c6
s

− 3(ekiui)(uiui)

2c4
s

]

, (4)

ω0 =
3

8
; ωk =

1

12
, k = 1 − 4 ; ωk =

1

16
, k = 5 − 8 ; ωk =

1

96
, k = 9 − 12.

The sound speed of the lattice fluid is given by c2
s = c2/2. The same D2Q13 lattice model

is used to solve the evolution equation for the energy density distribution function. At

equilibrium, the energy density is given by geq
k = ǫf eq

k , where ǫ = DRT/2 and D is the

number of physical dimensions [10].

As discussed in our previous work [13], gas-surface interactions have a significant impact

on the mean free path of the gas in the near wall region and these interactions need to be

taken into account to capture the flow characteristics in the Knudsen layer. Following previ-

ous work which accounts for the effect of the wall [13–15], and considering how temperature

relates to viscosity and density, the local relaxation time in the thermal LB model can be
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determined as follows:

τ =
λ

λ0

ρref

ρ
(

T

Tref

)ω−0.5

√

π

8

c

cs

Kn0NL +
1

2
, (5)

where NL = L/δy is the number of lattices over the characteristic length L, δy is the lattice

spacing, ρref is the density at the reference temperature Tref , and Kn0 is the Knudsen

number based on the mean free path λ0 evaluated from λ0 = (µ0/p)
√

πRT/2, where p is

the pressure and µ0 is the dynamic viscosity. The coefficient, ω, depends on the molecular

interaction model, with ω = 0.5 for hard sphere interactions and ω = 1 for Maxwellian

interactions. The local mean free path ratio, λ/λ0, can be solved separately depending on

the specific geometric conditions [13–15]. The thermal relaxation time is determined from

τt = (τ − 0.5)/Pr+0.5.

In this work, a kinetic boundary condition with a diffuse scattering kernel is employed.

The unknown reflected distribution function fk on the wall can be determined from the

incident distribution function fk′ as follows [16]:

fk(x, t + δt) =

∑

(e
k′
−uw)·n<0

|(ek′ − uw) · n|fk′(x, t + δt)

∑

(ek−uw)·n>0

|(ek − uw) · n|f eq
k (x, ρw,uw)

f eq
k (x, ρw,uw), (6)

where uw and ρw are the velocity and density at the wall, respectively, and n is the unit

normal. The above Maxwellian diffuse reflection at the wall assumes that the reflected

particles are in thermal equilibrium with the wall. The reflected energy density distribution

can therefore be related to the reflected number density distribution as follows [10]:

gk =
DR

2
Twfk, (7)

where Tw is the temperature of the wall.

III. RESULTS AND DISCUSSION

First, we apply our LB model to rarefied Fourier flow between two parallel plates sepa-

rated by a distance, L. In the simulations, the temperatures of the two plates are maintained

at T1 and T2 respectively, with T2 > T1. The mean temperature, (T1 + T2)/2 is used as a

reference temperature Tref and the Prandtl number is fixed at 0.68 for consistency with the

DSMC data presented by Gallis et al. [17]. The nondimensional temperature is defined as

5



T ∗ = (T − T1)/(T2 − T1). Figure 1 clearly shows that the temperature jump at the wall

increases with Knudsen number. At low Kn, the temperature profile is almost linear but

becomes increasingly nonlinear at higher Knudsen numbers. It can be seen that the LB

model is in good agreement with the DSMC data in both the slip and transition regimes.
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FIG. 1: Nondimensional temperature profiles for rarefied Fourier flow between two parallel plates.

The symbols represent the DSMC data presented by Gallis et al. [17].

The second test case considers thermal creep flow between two parallel plates separated by

a distance, L. Figure 2 shows the normalized velocity profiles across the channel at various

Knudsen numbers and compares the results from our lattice Boltzmann model against the

data obtained by Ohwada et al. [18] using a direct solution of the linearized Boltzmann

equation. It can be seen that our LB model is in very good agreement with the solution from

the linearized Boltzmann equation, indicating that the proposed model can capture thermal

transpiration phenomena in the slip and transition regimes. To the best of the authors’

knowledge, this is the first successful attempt at modeling thermal transpiration using a

lattice Boltzmann approach. Since the proposed method has a computational efficiency

comparable to a Navier-Stokes solver, it offers a practical simulation tool for nonequilibrium

thermal flows in industrially-relevant geometries.

IV. CONCLUSIONS

A thermal lattice Boltzmann model incorporating two distribution functions has been pro-

posed for modeling thermally-induced flows in the slip and transition regimes. The model

has been shown to give excellent agreement with data obtained by the direct simulation
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FIG. 2: Velocity profiles for thermal creep flow between two parallel plates at (a) Kn0 = 0.2257,

(b) Kn0 = 0.677, (c) Kn0 = 1.128, and (d) Kn0 = 2.257. The symbols represent the solution of

the linearized Boltzmann equation presented by Owhada et al. [18] and the velocities have been

normalized by the mean velocity in the channel, um.

Monte Carlo method and direct solution of the Boltzmann equation. The main advantages

of the present LB method include the small number of discrete velocities, its simple al-

gorithm, and its numerical efficiency compared to kinetic approaches. In conclusion, the

thermal lattice Boltzmann model provides an efficient and cost-effective modeling tool for

nonequilibrium gas flows in micro- and nano-fluidic devices.
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