Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Lattice Boltzmann model for thermal transpiration

Tang, G.H. and Zhang, Yonghao and Gu, X.J. and Barber, Robert W. and Emerson, David (2009) Lattice Boltzmann model for thermal transpiration. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 79 (2). 027701. ISSN 1063-651X

[img]
Preview
PDF (strathprints007762.pdf)
strathprints007762.pdf

Download (244kB) | Preview

Abstract

The conventional Navier-Stokes-Fourier equations with no-slip boundary conditions are unable to capture the phenomenon of gas thermal transpiration. While kinetic approaches such as the direct simulation Monte Carlo method and direct solution of the Boltzmann equation can predict thermal transpiration, these methods are often beyond the reach of current computer technology, especially for complex three-dimensional flows. We present a computationally efficient nonequilibrium thermal lattice Boltzmann model for simulating temperature-gradient-induced flows. The good agreement between our model and kinetic approaches demonstrates the capabilities of the proposed lattice Boltzmann method.