Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Gross plastic deformation of axisymmetric pressure vessel heads

Camilleri, D. and Hamilton, R. and Mackenzie, D. (2006) Gross plastic deformation of axisymmetric pressure vessel heads. Journal of Strain Analysis for Engineering Design, 41 (6). pp. 427-441. ISSN 0309-3247

[img]
Preview
PDF
Mackenzie_D_Gross_plastic_deformation_of_axisymmetric_pressure_vessel_heads_Jul_06.pdf - Final Published Version

Download (1MB) | Preview
[img]
Preview
Text (strathprints007760.pdf)
strathprints007760.pdf

Download (348kB) | Preview

Abstract

The gross plastic deformation and associated plastic loads of four axisymmetric torispherical pressure vessels are determined by two criteria of plastic collapse: the ASME twice elastic slope (TES) criterion and the recently proposed plastic work curvature (PWC) criterion. Finite element analysis was performed assuming small and large deformation theory and elastic–perfectly plastic and bilinear kinematic hardening material models. Two plastic collapse modes are identified: bending-dominated plastic collapse of the knuckle region in small deformation models and membrane-dominated plastic collapse of the cylinder or domed end in large deformation models. In both circumstances, the PWC criterion indicates that a plastic hinge bending mechanism leads to gross plastic deformation and is used as a parameter to identify the respective plastic loads. The results of the analyses also show that the PWC criterion leads to higher design loads for strain hardening structures than the TES criterion, as it takes account of the effect of strain hardening on the evolution of the gross plastic deformation mechanism.