Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Gross plastic deformation of axisymmetric pressure vessel heads

Camilleri, D. and Hamilton, R. and Mackenzie, D. (2006) Gross plastic deformation of axisymmetric pressure vessel heads. Journal of Strain Analysis for Engineering Design, 41 (6). pp. 427-441. ISSN 0309-3247

[img]
Preview
PDF (strathprints007760.pdf)
strathprints007760.pdf

Download (348kB) | Preview
[img]
Preview
PDF
Mackenzie_D_Gross_plastic_deformation_of_axisymmetric_pressure_vessel_heads_Jul_06.pdf - Published Version

Download (1MB) | Preview

Abstract

The gross plastic deformation and associated plastic loads of four axisymmetric torispherical pressure vessels are determined by two criteria of plastic collapse: the ASME twice elastic slope (TES) criterion and the recently proposed plastic work curvature (PWC) criterion. Finite element analysis was performed assuming small and large deformation theory and elastic–perfectly plastic and bilinear kinematic hardening material models. Two plastic collapse modes are identified: bending-dominated plastic collapse of the knuckle region in small deformation models and membrane-dominated plastic collapse of the cylinder or domed end in large deformation models. In both circumstances, the PWC criterion indicates that a plastic hinge bending mechanism leads to gross plastic deformation and is used as a parameter to identify the respective plastic loads. The results of the analyses also show that the PWC criterion leads to higher design loads for strain hardening structures than the TES criterion, as it takes account of the effect of strain hardening on the evolution of the gross plastic deformation mechanism.

Item type: Article
ID code: 7760
Keywords: gross plastic deformation, plastic load, criterion of plastic collapse, axisymmetric torispherical pressure vessel heads, inelastic finite element analysis, finite element analysis, Mechanical engineering and machinery, Mechanics of Materials, Modelling and Simulation, Mechanical Engineering, Applied Mathematics
Subjects: Technology > Mechanical engineering and machinery
Department: Faculty of Engineering > Mechanical and Aerospace Engineering
Depositing user: Strathprints Administrator
Date Deposited: 24 Mar 2009 11:23
Last modified: 04 Sep 2015 04:16
Related URLs:
URI: http://strathprints.strath.ac.uk/id/eprint/7760

Actions (login required)

View Item View Item