Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Gross plastic deformation of axisymmetric pressure vessel heads

Camilleri, D. and Hamilton, R. and Mackenzie, D. (2006) Gross plastic deformation of axisymmetric pressure vessel heads. Journal of Strain Analysis for Engineering Design, 41 (6). pp. 427-441. ISSN 0309-3247

PDF (strathprints007760.pdf)

Download (348kB) | Preview
Mackenzie_D_Gross_plastic_deformation_of_axisymmetric_pressure_vessel_heads_Jul_06.pdf - Final Published Version

Download (1MB) | Preview


The gross plastic deformation and associated plastic loads of four axisymmetric torispherical pressure vessels are determined by two criteria of plastic collapse: the ASME twice elastic slope (TES) criterion and the recently proposed plastic work curvature (PWC) criterion. Finite element analysis was performed assuming small and large deformation theory and elastic–perfectly plastic and bilinear kinematic hardening material models. Two plastic collapse modes are identified: bending-dominated plastic collapse of the knuckle region in small deformation models and membrane-dominated plastic collapse of the cylinder or domed end in large deformation models. In both circumstances, the PWC criterion indicates that a plastic hinge bending mechanism leads to gross plastic deformation and is used as a parameter to identify the respective plastic loads. The results of the analyses also show that the PWC criterion leads to higher design loads for strain hardening structures than the TES criterion, as it takes account of the effect of strain hardening on the evolution of the gross plastic deformation mechanism.