Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Design analysis of ductile failure in dovetail connections

Naruse, T. and Mackenzie, D. (2008) Design analysis of ductile failure in dovetail connections. Journal of Strain Analysis for Engineering Design, 43 (5). pp. 295-306. ISSN 0309-3247

[img]
Preview
PDF (strathprints007758.pdf)
strathprints007758.pdf

Download (814kB) | Preview

Abstract

The static plastic collapse of ductile dovetail structures is investigated by three analysis methods: slip-line field (SLF) theory based on a sheet drawing model, finite element limit analysis, and linear elastic finite element analysis with adapted pressure vessel design stress linearization and categorization methods. A range of angles and heights are considered in the investigation. Three experimental test cases are also presented. The limit analysis results are found to give the best comparison with the limited experimental results, indicating similar collapse loads and modes of ductile collapse. The SLF solution is found to give conservative but useful failure loads for small dovetail angles but, at angles greater than 30°, the solution is not generally conservative. The pressure vessel design by the analysis stress categorization procedure was adapted for dovetail analysis and was found to give reasonably conservative collapse loads in most cases. However, the procedure requires the designer to consider a number of different stress classification lines to ensure that a conservative collapse load is identified. It is concluded that the finite element limit analysis approach provides the best and most direct route to calculating the allowable load for the joint and is the preferred method when appropriate finite element analysis facilities are available.