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Abstract: In this paper we propose an optimal time-delayed feedback control (TDFC) for
tracking unstable periodic orbits (UPOs). It is shown that TDFC will drive a trajectory onto
a periodic orbit while minimising an integral of a cost function of the error in periodicity and
the control effort. This optimal TDFC relies on the linearisation about the delayed trajectory
not the UPO itself and therefore can be implemented without a priori knowledge of a reference
orbit. This optimal TDFC is applied to the problem of tracking an unstable periodic orbit in
the nonlinear equations describing the circular restricted three-body problem. The results of
this investigation demonstrate that TDFC could efficiently drive a spacecraft onto a periodic
orbit in the vicinity of a (UPO) halo orbit.

1. INTRODUCTION

Time-delayed feedback control (TDFC) is an efficient
method for stabilising unstable periodic orbits (UPOs)
embedded in chaotic attractors. The method of TDFC
is often referred to as the method of time-delay auto-
synchronisation, since the stabilisation of UPOs manifests
itself as a synchronisation of the current state of the system
with its delayed state. The method of TDFC, as proposed
by Pyragas (1992) is a non-invasive method that requires
no exact knowledge of the form of the periodic orbit,
only the period of the desired orbit. The method is based
on applying a simple continuous feedback control that is
proportional to the deviation of the current state of the
system from its state one period in the past, explicitly:

u(t) = −K(X(t) − X(t − τ)) (1)

where u(t) is the control vector, K is a gains matrix, X(t)
is the n-dimensional current state vector and X(t − τ) is
the state vector one period in the past with the period
τ . From equation (1) it can be seen that if the trajectory
lies exactly on the periodic orbit then the control signal
vanishes.

The concept of optimal time-delayed feedback control has
been proposed previously in the field of controlling chaos
by Basso et. al. (1998) and Tian et. al. (1998). In this
paper we present an alternative method for computing the
optimal gains matrix K. Moreover, we yield the necessary
conditions for optimality (minimising a function of track-
ing error and control effort) and present them conveniently
as matrix differential Ricatti equations. Before proceeding
we emphasise that the proposed optimal TDFC is conve-
nient for experimental situations, since it does not require
any reference to the UPO, that is, the computation of the
gains matrix is not computed about the unknown UPO,
but the delayed trajectory X(t − τ).

The aim of this paper is to apply the TDFC in equation
(1) to a nonlinear system of the form:

Ẋ(t) = f(X(t)) + u(t) (2)

with the aim to optimally track a periodic orbit defined
by:

X(t) = X(t − τ) (3)

∀t where τ is the period of the orbit.

In the second part of this paper we apply our optimal
TDFC to the problem of driving a spacecraft onto a
periodic orbit in the vicinity of an unstable (halo) periodic
orbit in the nonlinear equations of the circular restricted
three-body problem (CRTBP).

2. OPTIMAL TRACKING OF UNSTABLE PERIODIC
ORBITS

In this section we show that a TDFC in the form of
equation (1) optimally drives a trajectory onto a periodic
orbit in the vicinity of an unstable orbit defined by
equation (3) with respect to a quadratic cost function
of the error in periodicity and control effort. Firstly, we
note that as X(t) is a solution of the original system
(2) on the interval t ∈ [−∞,∞] with u(t) = 0 then the
delayed trajectory is also a solution of (2) on the interval
t ∈ [−∞,∞], namely:

Ẋ(t − τ) = f(X(t − τ)), (4)

it follows that subtracting (4) from (2) yields the error
dynamical system:

ė(t) = F (e(t)) + u(t), (5)

where

e(t) = X(t) − X(t − τ), (6)



where e(t) is referred to as the error in periodicity and

F (e(t)) = f(X(t)) − f(X(t − τ)). (7)

Additionally, taking the Taylor expansion of f(X(t))
about the delayed trajectory X(t − τ) gives:

f(X(t)) = f(X(t − τ)) + A(t)(X(t) − X(t − τ))+
+[H.O.T ]

(8)

where [H.O.T ] are higher order terms and

A(t) =
∂f(X(t))

∂X(t)

∣

∣

∣

∣

X(t−τ)

(9)

It follows from substituting equation (6) and (7) into
equation (8) that:

F (e(t)) = A(t)e(t) + [H.O.T ] (10)

and assuming that the initial error in periodicity e(t) is
small enough, we may neglect higher order terms in e(t)
and therefore equation (5) and equation (10) yield the
linear time-varying error dynamical system:

ė(t) = A(t)e(t) + u(t) (11)

for the controlled system (11) we wish to apply the control
(1) to drive e(t) → 0 while minimising a practically mean-
ingful cost function. We choose to minimise a performance
index J which is a quadratic function of the control effort
u(t) and error in periodicity e(t):

J =
1

2

∞
∫

0

(

e
T (t)Qe(t) + u

T (t)Ru(t)
)

dt (12)

where Q and R are real symmetric positive definite ma-
trices. Therefore, it follows from optimal control theory
for linear time-varying systems (as described by Lewis
(1986) and Barnett (1985)) that the optimal control for
the linear time-varying system (11) subject to the cost
function (12) is u(t) = −Ke(t) which from equation (6)
corresponds to a time-delayed feedback control of the form
u(t) = −K(X(t)−X(t−τ)) with K = R−1P (t) and where
P (t) satisfies the matrix differential Ricatti equations

Ṗ (t) = P (t)R−1P (t) − A(t)T P (t) − P (t)A(t) − Q (13)

The necessary conditions for optimality (13) can easily be
generalised to include the situation where the number of
controls m is less than the dimension of the phase space
n by replacing equation (11) with the linear time-varying
error dynamical system:

ė(t) = A(t)e(t) + Bu(t) (14)

where B is a n × m matrix. In this case K = R−1BT P (t)
where P (t) is a solution of the matrix differential Ricatti
equation:

Ṗ (t) = P (t)BR−1BT P (t) − A(t)T P (t) − P (t)A(t) − Q(15)

To apply this optimal TDFC in practise the differential
equation (15) has to be integrated simultaneously with the
equations of motion to obtain the instantaneous optimal
time-varying gains matrix K.

3. EXAMPLE: TRACKING UNSTABLE PERIODIC
ORBITS IN THE RESTRICTED THREE-BODY

PROBLEM

In this section we show by example that the optimal TDFC
can be used to drive a spacecraft onto a periodic orbit in
the vicinity of an unstable (halo) orbit (halo orbits were
described in detail by Szebehely (1967)). Additionally, a
number of halo orbits have been identified numerically in
the circular restricted three-body problem (CRTBP) by
Gomez et. al. (2001).

The CRTBP describes the motion of a small body (space-
craft) under the gravitational influence of two massive
bodies rotating in circular orbits around their common
centre of mass. It is well known that there are 5 equilib-
rium points (Libration points) in the rotating coordinate
system which correspond to points where the magnitude
of the centrifugal acceleration and the acceleration due
to the gravitational forces of the Earth and the Sun are
equal. Halo orbits represent one type of three-dimensional
periodic solution known to exist near the collinear points.
These types of periodic arcs are often envisioned as ideal
outposts for astronomical observation. For example the
international Sun-Earth explorer placed an observatory in
a Halo orbit about the L1 point, located along the Sun-
Earth line between the Earth and the Sun (as described
by Richardson (1980)).

Halo orbits are highly unstable and in such dynamically
sensitive regimes stabilisation is required to counteract the
effects of numerical error during the integration process,
particularly when propagating the path over multiple
revolutions. Methods such as LQR control described by
Wie (1987) and H∞ control described by Kulkarni et. al.
(2006) have previously been used to stabilise spacecraft
flight about halo orbits. The present study focuses on the
use of the optimal time-delay feedback control described in
this paper as a means to autonomously control spacecraft
on halo orbits.

Time-delay feedback control has an advantage over the
previous methods by Wie (1987) and Kulkarni et. al.
(2006) in that it does not require the construction of a
reference orbit a priori. Here time-delay feedback control
is proposed to enhance the autonomy of spacecrafts oper-
ating in the vicinity of libration points. If the spacecraft
requires autonomous on-board navigation time-delayed
feedback can, in principle, achieve a periodic path au-
tonomously. However, in order to minimize the control
effort, the spacecraft’s path must evolve in the vicinity of a
periodic orbit in phase space. Again, an a priori reference
trajectory is not required and therefore the time-delay
control will manoeuvre the spacecraft onto a closed path
autonomously. The position of the small body (spacecraft)
is denoted by x, y, z in astronomical units (AU) and the
nonlinear equations of the CRTBP are then given as:

ẍ − 2ẏ = Ωx + ux,
ÿ + 2ẋ = Ωy + uy,
z̈ = Ωz + uz,

(16)

where Ωx, Ωy, Ωz are the partial derivatives of Ω with
respect to x, y, z respectively and where



Ω =
1

2
(x2 + y2) +

1 − µ

r1
+

µ

r2
,

r2
1 = (x − µ)2 + y2 + z2,

r2
2 = (x − µ + 1)2 + y2 + z2

where a ‘dot’ denotes differentiation with respect to time,
µ is the mass parameter which for the Earth-Sun system is
µ = 0.000003 and u(t) = [ux, uy, uz]

T are the orthogonal
acceleration controls. These controls realistically reflect
the type of continuous control a conventional spacecraft
would use to stabilise its motion about a halo orbit. Firstly
we expand the state space of the nonlinear equations (16)
and write them as a set of first order ordinary differential
equations of the form Ẋ(t) = f(X(t)) + u(t). The error
dynamical system describing the time evolution of the
error in periodicity e(t) can then be expressed explicitly
in the form of a linear time-varying system:

ė(t) = A(t)e(t) + Bu(t) (17)

where A(t) is given by:

A(t) =

(

0 I
J Ω

)

, J =

(

a b c
d e f
g h i

)

, Ω =

(

0 −2 0
2 0 0
0 0 0

)

(18)

where

a =
∂fx
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and with

B =

[

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

]T

(19)

To solve this optimal tracking problem we then have to
integrate the differential equation (15) along the delayed
trajectory to obtain the gains matrix K. This procedure
involves determining the most appropriate real symmetric
positive definite matrices Q and R that yield the best
possible control performance in terms of the cost function
(12). The simple and easy to implement procedure used
to determine Q and R in this paper is to solve equation
(15) for Ṗ (t) = 0 at t = 0 to obtain a constant K matrix
for different values of Q and R. We then obtain a constant
K that gives us the best control performance given these
matrices. Having obtained the most appropriate constant
K we compute the corresponding P matrix through the
equation P = BRK. This P will then serve as the initial
condition P (0) in the numerical integration of (15) to give
us the true optimal gains matrix for the linear time-varying
system.

For the case where there is no control u(t) = 0, initial
conditions that yield halo orbits in the Earth-Sun system
have been stated numerically by Gomez et. al. (2001). We
perturb from these initial conditions to yield an almost
(halo) periodic orbit of period τ = 3.061. TDFC then
drives the spacecraft onto and stabilises about the halo
orbit. The controlled trajectory over 10 years is illustrated

in Figure 1 (i) and the acceleration controls required to
drive the trajectory onto a periodic orbit are illustrated
in Figure 1 (ii). In Figure 1 (i) the trajectory converges
to a periodic orbit in the vicinity of a halo orbit and is
maintained despite the highly unstable nature of a natural
halo orbit.
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Fig. 1. (i) Time-delay control drives the trajectory onto
a periodic orbit in the vicinity of a halo orbit (ii)
the acceleration controls (m/s2) required to drive the
trajectory onto a periodic orbit

The magnitudes of the controls are shown to reduce with
time, which through equation (1) implies that TDFC
drives the error function to zero. Future work will include
a Floquet analysis of the closed loop system to assess the
stability properties of the TDFC induced periodic orbit.

4. CONCLUSIONS

This paper addresses the problem of driving trajectories
of nonlinear systems onto periodic orbits using an opti-
mal time-delayed feedback control (TDFC). We state the
necessary conditions for optimality with respect to a cost
function of the error in periodicity of the trajectory and the
control effort. This setting naturally presents an optimal
TDFC which can be implemented without knowledge of a



reference orbit a priori. This optimal TDFC is then applied
to the problem of driving a trajectory onto a periodic
orbit in the nonlinear equations describing the circular
restricted three-body problem. The results of this inves-
tigation demonstrate that TDFC could efficiently drive a
spacecraft onto a periodic orbit in the vicinity of a halo
orbit.
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