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Abstract: Using a large plant level data set, this paper carries out an econometric analysis of the
environmental performance of multinational firms in the gold mining industry worldwide. The aim of
the analysis is to determine if, by looking at the actual environmental performance of firms (as opposed
to inferring such behavior from location decisions), we can shed any light on important questions in the
literature on firm location decisions: Do pollution havens exist in the gold mining industry? Do foreign
controlled gold mines perform environmentally worse or better than their domestic counterparts? We
develop different ways of measuring environmental performance within the context of a Bayesian
stochastic production frontier approach. In particular, we derive different ways of measuring technical
and environmental efficiency. When we implement these methods in our empirical work, we find
that results are robust across different models and ways of measuring efficiency. We find that gold
mines exhibit a wide range of environmental efficiencies; some are clearly more efficient than others,
in other words. However, and most importantly for our questions, we find that this variation in
efficiencies cannot be systematically related to mine characteristics such as whether they are foreign
or domestically controlled or whether they are located in developed or developing countries.

Keywords: Bayesian stochastic frontier analysis; efficiency; environmental regulations and plant
performance; pollution havens; regulatory chill; gold mining.
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This paper attempts to shed light on important economic and environmental policy questions
as: Do firms operating in developing countries behave differently from those operating in developed
countries? Do foreign controlled firms exhibit different environmental performance from domestically
controlled ones?

The answers to these questions have immense economic, welfare and environmental implications
for rich and poor countries alike. In this paper, we address these questions using a new data set of
gold mines worldwide. From a firm decision and environmental perspective, the gold mining industry
provides an important case study for analysis of these questions: a) It is truly global in the extent of
its reach. b) It produces substantial environmental pollution and degradation in comparison to other
types of economic activity. Recently, there has been much public concern over and media interest in the
environmental costs of gold production, especially in the developing world. For example, the New York
Times has recently run a series of articles on the environmental and social impacts of multinational
gold mining firms (see New York Times 2006a,b; 2005a,b,c). It alleges that many firms — a large
number of them Fortune 500 firms — are breaching national environmental regulations, causing serious
pollution and environmental degradation in the process. These claims have been vigorously denied by
the companies themselves. In response to the accusations, the world’s largest gold producer, the US
multinational firm, Newmont, declared angrily that it "regards American environmental standards as
its measures overseas" (New York Times 2004). In addition, a large academic literature (discussed in
the next section) exists which is concerned with the general issue of the environmental performance
of firms in poor countries and, in particular, with whether environmental regulation influences firm
location decisions.

From an econometric point of view, gold mining is also an ideal industry in which to investigate
these issues. There are hundreds of gold mines located throughout the world, in countries as diverse
in income and environmental standards as the USA and Gabon. In any country, mines can also either
be foreign or domestic controlled and owned. All produce the same type of waste and roughly follow
the same sequence of steps to do so. Thus, there are enough established gold mines in operation today
across a wide range of countries to provide meaningful statistical comparisons. Despite the potential
of the gold industry to shed light on the nature of firm location decisions, to our knowledge, there
have been no papers that address issues of environmental performance within the mining industry on
a global level. No doubt this is due to the shortage of adequate data on the activities of multinationals
at a sufficient level of disaggregation to carry out a meaningful analysis. The plant level data set we
construct in this paper, one that involves the activities of 419 mines over a ten year period, enables
us to surmount many of these data problems to a great extent.

In this paper, we argue that our questions of interest can be related to efficiency issues. A formal
definition of environmental efficiency will be provided below, but intuitively, environmental inefficiency
will be associated with a mine being environmentally lax and polluting excessively (relative to other
comparable mines). This focus on efficiency motivates our econometric specifications based on sto-
chastic frontier models. However, we have to move beyond the standard stochastic frontier approach
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output, waste pollution. Furthermore, gold mining may also involve the production of other metals,
such as silver and copper. Hence our model must allow for the production of multiple outputs. The
stochastic frontier literature has not settled on a standard single approach for dealing with production
when there are multiple outputs and some are undesirable. For this reason we define a variety of
specifications for the production frontier.

Related to the issue of undesirable outputs is the question of how to define “environmental effi-
ciency”. This issue leads us to a consideration of various ways of defining environmental inefficiency
relative to a frontier. We subsequently implement these different specifications and efficiency defi-
nitions in our empirical work. We find that our basic results are robust across all specifications of
the frontier and ways of measuring environmental efficiency. We find that the gold mines do vary
widely in terms of their environmental efficiency; some are clearly much more efficient than others.
However, and most importantly for addressing our environmental questions of interest, we find that
this variation in efficiencies cannot be systematically related to mine characteristics such as whether
a mine is foreign or domestically owned or whether it is located in a rich or a poor country.

The remainder of this paper is as follows: Section 2 provides further motivation for the nature
of our study in the context of a review of key papers in the relevant literature. Section 3 provides a
discussion of efficiency measurement with multiple (possibly undesirable) outputs. Section 4 provides
a comprehensive description of our data set and discusses data issues. Section 5 presents our empirical

results and Section 6 concludes.

Motivation and Literature Review

Recently, there has been much academic debate over the role of environmental regulations as determi-
nants of firm location decisions. Economic theorists have predicted that as poor countries increasingly
integrate into the global economy, their comparatively weak environmental regulations will lead them
to become destinations of choice for polluting industries, or "pollution havens". Anxious to cut costs
in a globally competitive world, foreign firms, they argue, will be attracted to poor countries, where
environmental standards are weaker and compliance costs are considerably lower than at home. How-
ever, over time, developed countries in turn will be forced to progressively weaken their environmental
standards in an attempt to reverse the flow of outward investment to poor countries. The end result
will be a "race-to-the bottom", with the most polluting country setting the global standard of envi-
ronmental quality to which all countries eventually gravitate. A closely related body of literature, the
"regulatory chill" literature suggests that while environmental stringency does not lead foreign firms to
migrate to countries with lax environmental standards, competitive pressures can nevertheless affect
environmental decision-making in host countries, preventing the latter from enacting stricter environ-
mental standards for fear of losing their competitive edge (Esty and Geradin 2001; Nordstrém and
Vaughan 1999). This literature argues that, while lax environmental regulations may not be driving
foreigners to set up operations abroad, they may indirectly be influencing the climate of policymaking

in poor countries in a way that leads to no appreciable rise in standards (Zarsky 1997; Neumayer



2001).

In contrast to the theoretical literature (see, e.g. Baumol and Oates 1988), empirical studies have
found mixed and largely weak support for the existence of pollution havens. For example, Bartik
(1998) finds that environmental stringency (measured using variables such as state spending on air
and water quality control, allowed particulate emissions on industrial boilers, and average costs of
compliance) had only small and insignificant impacts on locational decisions of US Fortune 500 branch
plants. Levinson (1996) finds similarly weak support in his study of the influence of state environmental
regulations on firm location decisions in the US. Only one indicator — an index measure of the strength
of state environmental regulations — was consistently significant but the magnitude of its coefficient
was small and economically had little significance. McConnell and Schwab (1990) and Friedman et
al. (1992) also find little support for the claim that environmental stringency may have determined
the location decisions of foreign investment in new manufacturing branch plants between 1977 and
1988. Using pollution abatement expenditures per state gross product originating in manufacturing
industries, Friedman et al. 1992 find that only if Japanese branch plants are included is environmental
stringency significant and negative, indicating that Japanese MNCs (multinational corporations) did
not tend to set up in states where pollution control costs were high. However, this finding did not hold
when only European MNCs were considered. Once again, the impact of environmental stringency was
quite small.

Similar findings derive from macro level studies examining the relationship between imports, ex-
ports and the consumption of dirty vs. clean industries. In their classical study, Grossman and
Krueger (1993) find no evidence to suggest that higher pollution abatement costs in the US had a
significant impact on imports from Mexico or from maquiladora sectors in particular. Birdsall and
Wheeler (1993) find similar results in their study of Latin America, arguing that closed economies are
more likely to favor pollution intensive industries, while openness actually encourages cleaner industry
through the importation of developed-country pollution standards. In contrast, Low and Yeats (1992)
do find some evidence of an association between the rise in environmental control costs in developed
countries and the creation of pollution havens in poor countries.

More recent evidence (both macro and micro) reveals much the same mixed but generally weak
support for the pollution haven hypothesis, although findings of later studies tend to be more signif-
icant than earlier ones. Becker and Henderson (2000), for example, find that air quality regulations
significantly reduce the number of new firm births in US counties in non-attainment of federal air
pollution standards, especially in the later years of the attainment period. Findings hold for different
types of firms, not just large ones, with corporate firms being more influenced by non-attainment sta-
tus than large firms. In their study of pollution abatement costs and foreign direct investment flows
into US states, Keller and Levinson (2002) find some evidence to suggest that abatement costs may
have a small deterrent effect on foreign investment, particularly in pollution-intensive industries (e.g.
chemicals). The measured effect, however, is very small: A doubling of their cost index is associated
with FDI decreases of less than 10%. Unlike other studies, they adjust for industrial composition for
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have cleaner industrial compositions than others and thus may by their very nature attract less FDI).
However, several recent studies for the US that endogenize local environmental regulations find that
pollution-intensive plants respond adversely to stringent environmental regulations (List and Co 2000;
List et al. 2003; Greenstone 2002). For example, List and Co (2000) find a strong determinative role
for environmental regulations among foreign firm location decisions in the US states for 1986-1993.
This result holds for all their measures of environmental stringency, even after controlling for pollution
intensive vs. non-intensive pollution industries.

In contrast to these US studies, Eskeland and Harrison (2003) find that abatement costs are not
a significant determinant of the distribution of foreign investment in Mexico, Venezuela, or Cote
d’Ivoire. They find that foreign FDI flows are associated with less energy use, the study’s measure
of pollution intensity. Dean, Lovely, and Wang (2004) in a study of foreign equity joint ventures
in China between 1993-1996, find that Chinese-sourced investments are deterred by areas with more
stringent pollution regulations. In contrast, equity joint ventures from both Chinese and non-Chinese
sources were attracted to areas with more stringent regulations, particularly the latter. This result held
irrespective of pollution intensity of industry. Their work stresses the importance of accounting for
firm heterogeneity in studies of FDI and environmental stringency. In contrast, Smarzynksa and Wei
(2001), in their study of the investment choices of multinational firms in the former Soviet Union and
Eastern Europe, find little evidence that weak environmental regulations attract foreign investment
or that lower standards are a prominent pull factor in pollution-intensive FDI flows. Unlike other
studies, they control for the problem of corruption in environmental laxity.

The above brief review brings to light a number of empirical shortfalls that may explain the mixed
and generally weak statistical findings of the literature. These shortfalls can be summarized thus:

a) The vast majority of studies focus on manufacturing rather than extractive resource industries.
For the most part, natural resource extraction and associated production processes are large-scale
operations, with high energy and environmental costs per output. These costs are typically far greater
than in manufacturing industries. One good example is the mining of minerals and metals. Not only is
mining a highly pollution intensive activity even when the most modern and sophisticated extraction
methods are used, its impacts on the environment are both immense and pervasive. Given that per
unit abatement and clean-up costs will typically be much higher than for manufacturing industries,
environmental stringency may potentially be a more significant factor in firm location decisions in
an extractive industry such as mining. Moreover, for many poor countries, extractive industries like
mining are the main source of foreign exchange revenues. Many poor countries rich in metals and
minerals resources compete aggressively for foreign capital by providing favourable tax and other
investment incentives for investors. Substantial investment is necessary for the development of even
one mine, as mining is a highly capital intensive enterprise. Despite its economic importance for
developing countries and its potentially huge environmental impacts, the mining industry has not
been systematically studied in the firm location literature.

b) If environmental stringency really does not figure prominently in the location decisions of firms

as some of the literature suggests, it may be because multinational manufacturing companies oper-



ating overseas have already adopted the newer, cleaner, and superior environmental technologies of
their rich world, home markets. The obverse of the pollution haven hypothesis, the "pollution halo"
hypothesis, argues that foreign firms are induced to respond in this fashion due to their sensitivity
to the "green" demands of shareholders and consumers (Zarsky 1999). However, while this may be
the case for the manufacturing industries, the nature of extractive industries makes it less likely that
shareholders or consumers will have information on these environmental impacts. To begin with, the
extraction of minerals from the earth is the first of many stages in the life cycle of a manufactured
consumer product. The environmental impacts of extractive industries may not figure as prominently
in consumer and/or shareholders’ minds as the tangible products created from the raw materials. Sec-
ond, because extractive industries, particularly mining, are often carried out in remote, depopulated
regions, environmental information is often difficult to obtain because monitoring of plant behaviour
is sporadic or non-existent. Thus, extractive industries may not be under the same kind of pressure
as manufacturing industries to adopt to higher environmental standards.

c¢) Misspecification arising from the use of aggregate and limited data sets. Due to data restrictions,
empirical studies must overwhelmingly rely on aggregate data, at best firm or industry level data (i.e.
not plant level data). Moreover, due to lack of available data, a large number of studies must focus on
just one or a few countries. Most of this research has been carried out on US or foreign firms operating
within the contiguous 48 states of the US (e.g. Becker and Henderson 2000; List and Co 2000; List
2001; McConnell and Schwab 1990). These drawbacks mean that existing studies are poor at picking
up important sources of heterogeneity in multinational firms’ decision-making and performance at the
global level. Studies also tend to suffer from the use of poorly defined measures of pollution intensity
(e.g. national standards for lead in petrol), which may have little if any relevance for the production
processes of a particular firm. Similar misspecification problems arise when pollution intensity has to
be inferred from aggregate sector or industrial emissions data. A good example of the latter is the
World Bank’s sector estimates of pollution intensity, drawn from its Industrial Pollution Projection
System (IPPS). Measured as pollution per unit output and pollution per employee, these estimates
have been widely used to measure pollution loads in industrial sectors. Since they are based on a large
sample of production and data emissions of firms in the US in 1987, their application to developing
countries may be limited. They also make the questionable assumption that pollution intensities
remain fixed. Hence any changes induced by trade liberalization (e.g. composition, scale or technique
effects) will not be picked up in the study.

This study attempts to address these shortfalls. It uses a truly global data set, one that observes
characteristics of firms operating in a wide range of countries at different levels of development and
exhibiting differing levels of environmental stringency. Our data set also allows us to compare foreign
with domestic controlled firms operating in the same country in the range of rich and poor countries
in which they are observed to operate. With this information we are able to investigate more fully
the complex relationships between country choice and environmental outcomes than current studies
do that use either firm level measures of inter or intra-country location choices or FDI flows or focus

on only one or a few poor countries.



Moreover, in contrast to many studies that focus on environmental intentions expressed as a
location decision or investment flow, this study focuses on the actual environmental performance
of mines once firms have set up operations, both at home and abroad. This approach allows us to
measure directly what firms are "up to" from an environmental point of view rather than inferring their
environmental behavior through their location or investment choices. Moreover, by linking pollution
directly to each mine that creates it, we also avoid using aggregate or national measures of pollution
output (e.g. SO? emissions) or de jure statutory indices of environmental performance (e.g. lead
content limits in gasoline) that may have little meaning for the firm. While some developing countries
have exemplary environmental regulations on their statute books, in practice, compliance is often very
weak because monitoring is lax or non-existent. While they do provide a good overall proxy for a
country’s regulatory stringency, aggregate pollution emissions for an industry do not effectively link
the individual firm’s location decision with its environmental intentions since these kind of measures
represent a country’s total emissions.

Our context for analysis of these relationships is the industrial gold mining industry. We use a
panel data series of gold mine producers for 1996-2005. The data set provides an array of information
on the characteristics of every major player in this industry around the world. As discussed in the
introduction, we associate the performance of each mine to its environmental efficiency. However,
there are some important modelling issues associated with the definition of environmental efficiency

to which we now turn.

Efficiency Measurement with Multiple, Possibly Undesirable, Out-
puts

In this section, we briefly describe some of the issues relating to efficiency measurement with mul-
tiple, possibly undesirable outputs. Our goal is to provide reasonable definitions of technical and
environmental efficiency. We break the discussion into two parts; the first discusses multiple output
production where all outputs are desirable (i.e. "goods") while the second discusses the complications
caused by the addition of undesirable outputs (i.e. "bads"). Both of these issues are very important
since mines often produce many outputs (e.g. gold, silver and copper often are all produced from sim-
ilar ore). Furthermore, as discussed in the introduction, the pollution that mines produce is immense,
and is becoming an important policy issue.

Before we begin, we stress that we are considering only the case where we use data on inputs
and outputs (and geological characteristics) of mines to estimate best-practice technology. Efficiency
is then measured relative to this best-practice technology. That is, if mine A and B have the same
inputs and geological characteristics and are producing the same amount of bads, but mine A is
producing more good output than mine B, then we say mine A is technically more efficient than mine
B. Similarly, if mine A and B have the same inputs and geological characteristics and are producing
the same amount of good outputs, but mine A is producing less pollution than mine B, then we say

mine A is environmentally more efficient than mine B. We do not formally model the decision process



of the mine nor do we address the question of whether mines are acting optimally (except in the sense
that inefficiency is not optimal). Typically, investigation of the latter questions involves data on input
prices and costs which are not available in our data set. Examples of empirical mining papers which do
investigate such economic issues include, among many others: Cairns (1981); Farrow (1985); Lasserre
(1985); and Young (1992).

In this paper, we adapt an econometric approach developed in Ferndndez, Koop and Steel (2000,
2005) to our application. However, it is worth mentioning some alternative approaches to productiv-
ity and efficiency measurement with multiple, possibly bad, outputs when only data on inputs and
outputs is available. Many papers adopt a non-econometric approach involving index number meth-
ods or data envelopment analysis. In terms of multiple output production, Caves, Christensen and
Diewert (1982) is an influential early paper. Pittman (1983) extended their approach to the case of
undesirable outputs. Pittman’s framework has been adopted or adapted in many later papers, such
as Fare, Grosskopf, Noh and Weber (2005). Tyteca (1996) provides a review of some of this literature
with a focus on the environmental efficiency aspect. For many cases, such non-statistical approaches
are undoubtedly reasonable. However, in noisy data sets it might be preferable to formally model
measurement error and adopt an econometric approach (Koop, Osiewalski and Steel 1997 provides a
more detailed discussion of these issues).

There are few econometric papers relating to efficiency analysis in multiple-output production
functions. As discussed in detail in Ferndndez, Koop and Steel (2000), a statistical model of multiple-
output production is inherently multivariate: the dependent variables are the outputs. In essence, this
means we need a multiple equation model. Since most of the previous econometric approaches in the
literature (e.g. Adams, Berger and Sickles 1999; Lothgren 1997; and Reinhard, Lovell and Thijssen
1999) involve single equation models, we do not adopt any of these approaches in the present paper.
Atkinson and Dorfman (2005) is a recent paper that uses Bayesian generalized methods of moments

in a model of multiple output production involving a single bad output.

Multiple Output Production

The best-practice technology for producing a vector of p outputs, y = (y1, .., yp)', from a vector of m

. / . . . .
inputs, z = (21, ..,Zmn)’, can be described using a transformation function:

f(:%x) = 0.

We assume this production frontier is separable. (The assumption of separability can be relaxed as

described in Ferndndez, Koop and Steel 2005). Thus, the transformation function has the form:

9(y) = h(x). (1)

The left and right hand sides of this equation can be interpreted as aggregate output (or, equivalently,
as defining a production possibility curve) and production frontier, respectively. (1) defines the maxi-

mum feasible output that can be achieved for given inputs. In practice, mines might not achieve this



maximum and the deviation from this maximum is used in our efficiency measures. In the following
material we will let y and = be the actual output and input choices of a mine (as opposed to the
theoretical maximum or minimum values for these variables).

There are a variety of different ways that technical efficiency can be measured in this setup. The
reader is referred to Fernandez, Koop and Steel (2005) for a more complete discussion of alternative
efficiency measures. Here, we begin with the most common measure of efficiency: radial output-
oriented technical efficiency, Tro. The inverse of this (i.e. 1/7ro) measures the amount by which all
p outputs must be proportionally increased in order to get to the frontier. For an inefficient mine we
obtain Tro < 1, whereas T7ro = 1 corresponds to full efficiency. Since g(.) determines the maximum

feasible output by a mine with inputs z, radial-oriented technical efficiency is defined by:

g(yl yp) = h(z), (2)

) )
TRO TRO

where 0 < Tro < 1. Note that, in this setup, Tro is equal to the output-distance function used by
some researchers (see, e.g., Shephard 1970 or Fare and Primont 1995).

An alternative efficiency measure is radial input-oriented efficiency, 7gy. It measures the amount by
which all inputs must be proportionately decreased to get to the frontier. That is, efficient production

is defined as:

91, Yp) = h(TRIT1, ..., TRITm) 5 (3)

which implicitly defines 7g;.

Radial-oriented efficiency measures such as those given in (2) and (3) are the most popular ones.
However, as we shall discuss below, for our mining application they might not be the most appropriate.
It is also possible to define efficiency measures relating to a particular input (or output). That is,
instead of asking "by how much can all inputs be decreased proportionally without reducing existing
production levels?" one can ask "by how much can the 5 input be decreased (leaving all other inputs
unchanged) without reducing existing production levels?". Analogous to (3), individual input-oriented
efficiencies, 77, for j = 1, ..,m, can be defined implicitly by noting that efficient production corresponds

to:
91, yp) = h(x1, .. TriT), . Ty - (4)

Individual output-oriented efficiencies, 7¢;, can be defined through:

Y
g(yl,...,%,...,yp):h(:cl,...,a:m). (5)
TOj

In our empirical work, we use only gold mines (i.e. mines whose main output is gold). Many of
these mines only produce gold. However, some produce other metals. Thus, it is possibly important to
consider several outputs (i.e. gold, silver and copper) in the production possibility curve. Since these
are predominantly gold mines, a measure of gold-oriented technical efficiency would be of interest, but
radially-oriented efficiency measures may not be sensible. Consider, for instance, what the shape of

the production possibility curve would be if gold and copper are the two outputs, but only a few firms



produce copper. For the mines that produce no copper, their radially-oriented efficiency measures
will (sensibly) be equivalent to their gold-oriented efficiency measures. However, the shape of the
production possibility curve relating to copper production will be heavily influenced by the few firms
which do produce copper. They could easily appear very near the frontier in the copper direction
(and thus their radially-oriented efficiency measure could be near one) even if they are inefficient in
gold production. This kind of story is meant to motivate why traditional radially-oriented efficiency
measures may not be of primary interest. Accordingly, in our empirical work we focus on gold-oriented

measures.

Undesirable Outputs

The literature has explored several different ways that the previous framework has been extended to
accommodate undesirable outputs. In our empirical work, we investigate different possibilities. The
simplest thing to do is to treat the bad output as an input. The justification for doing this arises
from the observation that, in many technologies, the relationship between pollution and output is very
similar to that of a regular input and output. For instance, more output can only be produced with
more labor (a conventional input) and more pollution. A few papers which adopt this approach (and
offer further justifications for it), include: Cropper and Oates (1992); Koop (1998); Pittman (1981);
and Reinhard, Lovell and Thijssen (1999). In Atkinson and Dorfman (2005), the bad output is labelled
a "technology shifter", but enters in the same manner as an input in (1). If a bad output is treated
as an input, then a natural definition of "environmental efficiency" follows immediately. That is, we
can simply use the individual input-oriented efficiency (i.e. 77;) defined by (4) corresponding to the
bad as environmental efficiency.

A second way to treat the bad output is to transform it so that it can be interpreted as a good
output (see Atkinson and Dorfman 2005, for a discussion of this issue and Fernéndez, Koop and Steel
2005 for an application). That is, higher values of "good" outputs are desirable, but higher values of
"bad" outputs are undesirable. But if we include an inverse transformation of the bads, then they
can be interpreted as goods. For instance, if b is a bad output, we could include it in (1) by defining
a new "good" output (and label it the j*" output), yj = %. If the bads, suitably transformed, are
included in this manner then a natural definition of "environmental efficiency" can be found based
on the individual output-oriented efficiency, 7¢;, defined by (5) associated with the transformed bad
output.! The exact transformation required to produce "environmental efficiency" from this output-
oriented efficiency is given on pages 423-424 of Fernandez, Koop and Steel (2005).

Note that we have so far defined different measures of technical and environmental efficiency
through equations such as (2) through (5), which specify fully efficient production. However, each
definition implies a single efficiency measure. Intuitively, the actual output of each mine will lie inside
the production frontier. We can measure this "deviation from frontier" using our econometric methods.
However, to associate this deviation from the frontier with an efficiency measure, we have to make a
choice. For instance, if we choose to specify fully efficient production using (2), then the "deviation

from frontier" is interpreted as technical efficiency. If we choose (5), then the "deviation from frontier"



is interpreted as an individual output-oriented efficiency. As discussed in detail in Ferndandez, Koop
and Steel. (2005), this is sensible. For each observation, we can measure a "deviation from frontier"
in many different directions (e.g. in a radial sense, in a horizontal sense, a vertical sense, etc.) and,
thus, have many possible efficiency definitions. But, in a given econometric model, we can only choose
one of them. Put informally, we can either measure environmental efficiency or technical efficiency,
but not both at the same time. Full details of our econometric methods, including the transformations
which turn the deviation from the frontier into a particular efficiency definition, are given in Appendix
A.

We now have a range of different measures of technical and environmental efficiency. In our
empirical work, we calculate all of these measures, reasoning that a better understanding of our data

set will be found by looking at it from several different (sensible) angles, rather than a single one.

Data

The mine-level data set for this analysis covers the years 1996 through 2005 and was derived from a
variety of sources, such as company reports, websites and other independent industry mining sources.
It has been supplemented with information and statistics from international, regional and national
mining publications. More details of the data set, much of which has been collected by an independent
mining consultancy firm, can be found in Appendix B. Table 1 in this section provides a summary of
data definitions, acronyms and measures. The database used in this study has detailed information
on a range of characteristics relating to gold mining production: metal, grade, ore production, ore
resources and reserves, mining methods, capital and labor inputs, controllership status (i.e. foreign
or domestic) and country location and income. We have observations for 2211 mine-years (i.e. 419
mines observed for up to 10 years). Note that missing data for some variables and the fact that some
mines did not open until after 1995 mean that not all mines have complete data for the entire 10 year

period. Hence our data set is an unbalanced panel.

Dependent Variables

Our main dependent variable is a measure of output: gold production (designated by the chemical
symbol AU) measured in tonnes. However, many of the mines in the sample produce other outputs
alongside gold. In this paper, we also measure outputs in mines that produce two other key metals
in addition to AU: copper (CU) and silver (AG), measured in kilotonnes and tonnes, respectively. In
addition, we also include a dependent variable measuring the yearly value of all metals, AU, AG and
CU, expressed in millions of US dollars. In some of our specifications, our pollution or environmental
bad measure is a dependent variable and in others it is an explanatory variable. This measure is

discussed in detail below.
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Explanatory Variables

Most gold worldwide is mined from lode deposits (concentrated deposits contained within surrounding
rock). A very small proportion of the world’s gold is mined from placer deposits, in which gold is
contained in alluvial deposits produced from water or ice. Because they use such widely different
technologies and extraction processes in comparison to underground and open pit mines, placer mines
were excluded from the analysis. In this study, we measure environmental efficiency in both open pit
and underground mines. We control for each type of mining process in the analysis.

Open pit (surface) mines usually involve extensive blasting away of vegetation, soil, and rock with
explosives to gain access to lode deposits. This type of mining also involves the construction of benches
into the walls of the mine to access ore deposits further down on the surface. Underground mining,
in contrast, requires that a shaft be sunk into the ground to reach the ore body, which is accessed
by "drifts" (passages) that are cut from the shaft at different depths. In our sample, 218 mines are
underground (UNDERGROUND) and 201 are open mines (OPENPIT). We adjust for each type of
mine operation in the analysis by including OPENPIT as an explanatory variable and interacting it
with all other explanatory variables. A few mines had both open pit and underground operations. In
these cases, the open pit operations were often a precursor stage to underground operations. Hence
we classified them as underground operations. Econometric tests indicated that this classification was
appropriate (i.e. the third dummy variable for mines with both underground and open pit operations
had a coefficient which was statistically indistinguishable from the coefficient on the UNDERGROUND
dummy and, accordinly, we collapsed these two categories together).

Waste pollution in a gold mining operation conventionally comprises two main types of waste:
waste rock and tailings. Waste rock is produced at the extraction stage, where the rock in which the
ore is embedded is taken from the ground. Mineral extraction from the mined rock usually involves
removing any overburden (e.g. soils, trees), and then drilling, blasting and mucking (removing) the
broken ore from the mine (EPA 1995). This stage produces a considerable amount of waste rock, as
well as overburden. In addition, it can produce a range of different waste pollutants (ground, air and
water) from the large amount of hydraulic fluid, lubricants and associated chemicals (e.g. benzene)
involved in the drilling, blasting, mucking and breaking up of ore and its subsequent transport. Other
environmental impacts of the extraction stage include: deforestation and habitat loss from site prepa-
ration, blasting, and transport networks, soil erosion, dust, air and water pollution (e.g. mercury
emissions), structural damages due to vibration and settling and impacts arising from other land uses
which may be displaced by the mining operations. These impacts are hard to quantify and are not
investigated in our analysis.

The second stage, known as beneficiation, involves the processing of the ore using physical and
chemical means in order to regulate its size, to remove unwanted constituents and/or improve its
quality (EPA 1995). It is this ore which is eventually processed to produce gold and tailings (unspent
and low grade ore). A number of methods are used to beneficiate the ore but virtually all involve

the application of cyanide (sodium cyanide or potassium cyanide), to expose the metal values in the
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ore to the cyanide (the leaching stage). The gold is then precipitated from the solution to separate it
from the remaining chemical and ore. This unspent and economically unprofitable ore is then stored
in dumps or ponds, possibly for reprocessing later. In addition to large volumes of residual and gold
metal-cyanide complexes, other waste will also be emitted at this stage, for example, heavy metals
and chemicals such as sulfuric acid, and mercury acetylene.

In gold mining, the share of the originally extracted gold ore that ends up as low grade and spent
ore (excluding overburden) is as high as 99.99%, compared to iron at 60% and Aluminium at 70%
(Gardner and Sampat 1998). Since the gold that is eventually produced comprises only a small part
of the ore (measured in mere grams per tonne) the remainder of the ore (spent ore and low grade
ore) is treated as waste or "tailings". In this study, our environmental "bad" measure is these tailings
(TAILINGS), a measure for which we have data for all mines. TAILINGS is measured in millions of
tonnes. Note that while tailings are comprised overwhelmingly of the waste geological material created
at the beneficiation stage, they may, as mentioned, also contain many other pollutants (e.g. metal-
cyanide complexes). Thus, tailings waste can be thought of as an indirect measure of the potential
scale of production of these other, non-geological or chemical wastes, on the environment. That is,
while there is no direct correlation between tailings production and chemical use, in general the more
of such solid waste produced the more chemicals needed, ceteris paribus. This has particularly been
the case for the gold mining industry over the past decade or so (the period of our data set). In general,
ore grades have declined over this period, with the consequence that chemicals use has increased.?

Tailings waste comprises a widespread environmental management problem in the gold mining
industry today. Its existence also presents (as does waste rock and overburden) a large economic
burden for mines. Firms will expend considerable effort in minimizing the cost of its disposal and
storage (IIED 2002). One management problem is simply where to put the sheer volume of such waste
produced (IIED 2002). Tailings are usually dumped in piles or ponds ("dams"), or in specially made
storage facilities. Backfilling of waste in open cast mines is another way of dealing with the storage
problem. The impacts on the land around and beyond the site of the mining operation are directly
related to the volume of waste produced. The huge volumes of tailings that must either be stored
or disposed of has immense negative implications for plant and wildlife populations, forests, and the
amenity value of the landscape.

Tailings waste also poses significant management problems as a pollutant, when it is stored or
disposed of in the environment. This relates to the fact that this material is often in and of itself
quite toxic, but it is also rendered further as such by its processing. For example, gold tailings often
contains high levels of dangerous substances such as heavy metals and from the processing stage, added
deadly chemicals (e.g. cyanide). These pollutants can find their way into the air, ground and water
systems, with potentially detrimental consequences for flora and fauna. In addition, water systems
can be affected simply as a result of the reduction in groundwater recharge due to increased run-off
from fine particles in the waste. A major concern of tailings waste is its chemical instability, leading to
transformation of its constituent components and their dispersion in the environment. For example,

since they are highly erodible in water, tailings have great potential to impact negatively on water
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supplies through the production of acids and dissolved metals. The remediation of acid drainage is a
particularly costly process for firms. Costs are compounded by the acid’s long-term presence in the
environment, and its serious and direct impact on waterways. Acidic water also can generate new
pollutants, such as dissolved metals (e.g. aluminium and copper). Their presence in the water can
lead to a slimy substance (ochre) that is detrimental to aquatic life.

Moreover, the transport of tailings waste to dump sites — by rail cars, trucks, conveyors, and
elevators — also creates hazardous emissions and is highly energy intensive. The construction of ponds
and other forms of storage also requires immense amount of water. Dust (which can contain high
levels of toxic materials such as silica and arsenic) from the dry beaches of tailings storage facilities
is also of major concern, particularly in arid areas. In recent years, there has been a wide number of
failings in tailings storage. Some of these disasters have left huge environmental footprints. To give
but one example from our own data set: A failing in 1995 in the tailings dam at the Omai mine in
Guyana (owned by the Canadian multinational Cambior, Inc.) resulted in the release of hundreds of
millions of gallons of cyanide-laced tailings slurry into a river that feeds the country’s main waterway,
killing tens of thousands of birds and aquatic animals (UNEP 2002). (For a comprehensive list of
recent tailings storage failures see Engels 2002-2006).

We also control in the analysis for other factors that may have a potential effect on output. The
location and size of gold ore deposit depends on complex geological factors, which are not distributed
uniformly in the world. Among the set of feasible locations in the world, the multinational firm will
evaluate both the geological and geotechnical characteristics of a site in order to determine the economic
feasibility of developing a mine. The initial decision to develop a mine will be influenced greatly
by these characteristics (e.g. deposit shape and location, scale grains of the ore mineral, hardness,
impurities, steepness of open pits, stability of underground openings of the site and so forth). These
characteristics will to a large extent determine the economic feasibility of developing a mine. Among
these economically feasible possibilities, only a handful of mines will be developed at any given point
in time. Geological and geotechnical characteristics, while important from a production standpoint,
largely figure at the mine location decision and pre-operational stage. Moreover, to a certain extent,
the type of mining method adopted will indirectly reflect these characteristics. Geological models of
the ore body, mineral grades and tonnages, for example, will all determine whether the mine will be
mined as open pit or underground (ITED 2002). Hence, our OPENPIT explanatory variable will partly
capture geological characteristics.

We also include the two geological characteristcs which are most important to production: RE-
SOURCES and GRADE. To a far greater degree than other geological and geotechnical factors, these
two measures will have an influence on mine performance. That is, they will also impact on the mine
after the decision to develop it is made, at the operations stage, which is the focus of our analysis.
In this study, our variable RESOURCES measures (in units of millions of tonnes) the concentration
or occurrence of the metal in a form and quantity that there are reasonable prospects for its eventual
economic extraction. In other words, it provides a measure of the total concentration of the resource of

economic interest and includes the following categories (in order of increasing geological confidence):
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inferred, indicated and measured. It also includes all probable and proven ore reserves (measured in
millions of tonnes). (A reserve represents only that part of the resource that can be profitably extracted
at a given point in time, under current technical and market conditions). We use the comprehensive
"resources" measure rather than the "reserves" measure since it is the former that fully specifies the
method of mining adopted, and thus, the degree of waste produced and any technological and other
investments made in the mine over the years of operation. GRADE is measured as grade of gold in the
ore body (in units of grams per tonne). Grade of ore will have a direct impact on the amount of waste
produced. For example, low grade, disseminated ore bodies tend to produce more waste than higher
grade ores since they are usually mined using open pit methods. Open-pit mines generally produce
more waste than underground mines. GRADE is measured as the amount of contained gold in the ore
in grams/tonne.

We also control for mine ownership and country income level. These variables allow us to proxy
possible pollution haven behavior among the multinational firms in addition to allowing us to make
comparisons between domestic and foreign firms operating in the same country. Data for country
income levels was obtained from the World Bank 2001. Countries are classified according to World
Bank definitions of low, lower-middle, upper middle and high GNP per capita. These income categories
have been conflated in a dummy variable reflecting: a) low to lower-middle income ($0-$2995) and b)
upper middle to high income countries (>$2996). These country income distinctions are captured by
the dummy variable, RICH (1= rich; O=poor). Our measure of foreign influence relates specifically
to the issue of control (as opposed to ownership); that is, to who makes decisions over production.
We measure ownership using the so-called normal method. The normal method of inferring ownership
attributes all production from the producers (mines) to controlling companies rather than to the
shareholders (‘equity share’ method). For example, if a company holds 70% in a mining company and
the remaining 30% of the shares are small shareholders only, it is designated to have 100% control. If
this controller is a foreign company (i.e. has its head office in a country outside of where it is operating),
then our variable FOREIGN assigns it a value of 1; and 0, if domestically controlled. Where there is
control by both domestic and foreign firms, the mine is classified as FOREIGN. This way of measuring
foreign influence is realistic in that generally it is these controlling companies that make the decisions
about where to locate, what production methods to adopt, and so forth. In contrast, the owner(s) or
shareholders do not generally exert any influence over such decisions. As an aside, we note that we
are using the familiar term "ownership" in our discussion, but it would be more formally correct to
call this "controllership".

Finally, we have not mentioned conventional inputs such as capital and labor since for many mines
data are missing and hence including them would reduce sample size. In the next section, we discuss
some results including variables for capital and labor in a subset of mines for which such data were
available. We present evidence that indicates that it is better not to include these variables (and,
thus, work with a much larger data). In this subset analysis, capital (CAPITAL) is measured in terms
of project costs, defined as the initial startup cost for the mine, in millions of US dollars. Labour

(LABOR) is measured as the number of permanent employees in each mine.
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Empirical Results

We have shown how there are many ways of measuring efficiency with multiple output production.
When some of the outputs are undesirable and we are interested in measuring both environmental and
technical efficiency, the number of possible efficiency measures multiplies. Hence rather than select a
single way of measuring technical and environmental efficiency, we present an array of results using
different metrics. After all, an empirical result that is found repeatedly using different methods is
more believable than one found using only one. We begin with some benchmark results, obtained
from standard single-output panel data stochastic frontier models (where the bad output, TAILINGS,
is treated as an input). We then present results using the multiple-equation approach based on
Fernandez, Koop and Steel (2000).

The production frontier in all of our approaches takes a translog form in the set of explanatory
variables. The set of explanatory variables always includes GRADE, RESOURCES and OPENPIT.
When environmental efficiency is estimated with TAILINGS treated as an input, TAILINGS is an
explanatory variable. Based on preliminary econometric analysis, there does not seem to be evidence
of variation over time in either the production frontier or mine-specific inefficiencies. Accordingly, we
do not include a time effect in our model.

To address some of the key policy questions of interest in this paper, it is important to see whether
the efficiencies of mines can be associated with any explanatory variables. For instance, if mines in
poor countries are less technically or environmentally efficient than those in rich countries, then this
may suggest that mines are less careful about the environment in poor countries. Similarly, if foreign-
owned firms are found to be less environmentally efficient than domestically-owned firms, that suggests
rich country multinationals are behaving environmentally worse than domestic firms. As described in
Appendix A, our econometric models allow for explanatory variables in the inefficiency distribution.
We let w;; for i =1,..,N and j = 1,..,m denote the value of the 4t explanatory variable for the i
mine and allow for an intercept (i.e. w;; = 1 for all mines). In our empirical work, all of the other
explanatory variables in the inefficiency distribution are dummy variables. We allow for them to affect

the mean of the inefficiency distribution® as:

Mt =TT, (6)
j=1

where ); is the mean of the inefficiency distribution of mine ¢ and ¢; > 0 for j = 1,..,m. To aid in
interpretation note that if ¢; =1 for j = 2,...,m then this model reduces to one with no explanatory
variables in the efficiency distribution (i.e. )\;1 = ¢; which is the same for all mines). If, for instance,
wj2 equals one for foreign-owned mines (and zero for domestically-owned mines), then (6) allows for
these two types of mines to have different inefficiency distributions (i.e. )\i_l = ¢, ¢, for foreign-owned
mines and A 1 = ¢, for domestically-owned mines). If ¢, > 1 then the mean of the inefficiency
distribution is lower for foreign-owned firms. Thus, if ¢ > 1, foreign-owned firms tend to be more

efficient than domestically-owned ones (i.e. lower inefficiency means higher efficiency). We stress that
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such a finding would not imply that every foreign-owned firm is more efficient than every domestically-
owned one, but rather that the former are drawing their efficiencies from a distribution with a higher
mean. Overall, if ¢, > 1 it will be evidence that foreign-owned firms do tend to be more efficient
than domestically-owned ones. Similarly, ¢, < 1 indicates that domestically-owned mines are more
efficient than foreign-owned ones. If ¢, = 1 foreign- and domestically-owned forms tend to have the
same efficiency. This motivates an interest in the hypothesis that ¢5 = 1 and we can calculate the
probability that this hypothesis is true as described in Appendix A. The previous discussion relates
to ¢y. Similar considerations hold for ¢; for j = 3,...,m. In our empirical work, we use two dummy
explanatory variables in the inefficiency distribution: FOREIGN and RICH.

Single Output Results

We begin by presenting some results using stochastic frontier models with a single output and TAIL-
INGS included as an input (and all other explanatory variables listed above). All variables (except
dummy variables) are logged in our translog specification. As noted, we consider two different possi-
bilities for the single output: the (log of) gold output (AU) and the (log of) the total value of gold,
silver and copper produced (AU, AG and CU) by each mine (measured in millions of US dollars).

Although we are mostly interested in mine efficiency, it is of interest to present some results
relating to the production frontier itself (if only to establish that it is reasonable). Table 2 presents
point estimates (i.e. posterior means) and associated measures of uncertainty (i.e. posterior standard
deviations) for the coefficients in our translog production frontier. Loosely speaking, the specifications
in table 2 are similar to a traditional random effects specification (i.e. the inefficiency term plays
the role of the individual effect) and the non-Bayesian reader may prefer to interpret them in this
manner (i.e. as being very similar to what the random effects estimator of the translog production
frontier would produce). Note that in our discussion we will use an informal rule of thumb that says
that a posterior mean two/one standard deviations from zero indicates strong/weak evidence that the
corresponding variable has explanatory power for the dependent variable.

The point estimates in table 2 are mostly sensible. For instance, there is strong evidence that
TAILINGS is an important explanatory variable that is positively associated with output. Other
important explanatory variables include GRADE and RESOURCES. There is strong evidence that
GRADE is positively associated with output, but slightly less evidence for RESOURCES. An impor-
tant issue is whether open pit mines have a different technology than other mines. Unsurprisingly,
we are finding they do. There is only weak evidence of a direct effect of OPENPIT on output. But
there is strong evidence that some of the interaction terms (e.g. TAILINGSx OPENPIT) have such
an effect. There is strong evidence that some of the interaction and squared terms are important
explanatory variables, indicating that a translog specification is necessary to model mining technol-
ogy. Finally, although there are some differences between results obtained using gold output as the
dependent variable and those obtained using a dependent variable measured as the value of all metals,

overall the two estimated frontiers are sensible and similar.
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table 2 here

Table 3 presents results relating to ¢;, the coeflicients on the explanatory variables in the ineffi-
ciency distribution. The point estimates of the coefficients on the foreign-owned and developed-country
variables are both greater than one (regardless of which dependent variable is used). This indicates
that foreign-owned and/or developed country mines do tend to be more efficient than domestically-
owned and/or developing-country mines. However, the uncertainty associated with the point estimate
is large, and table 3 indicates that the probability of the coefficients equalling one is quite high. Thus,

it seems that there are no systematic differences in efficiency across these different categories of mine.

table 3 here

For the sake of brevity, we do not produce results relating to technical (calculated using equation
2) and environmental efficiency (calculated using the input-oriented efficiency measure of equation 4
for the input TAILINGS) for every one of our 419 mines. As an example, let us present some results
relating to Barrick, the world’s third largest gold mining company. A large Canadian multinational,
Barrick has mines around the world, including some in rich countries (i.e. the Betze Post Gold Mine
and Meikle Gold Mines in the USA) and some in poor countries (i.e. the Porgera Gold Mine in Papua-
New Guinea and the Pierina Gold Mine in Peru). It would be interesting to see if their operations
are very different in developed and developing countries. Using our model where the value of all
metals is the dependent variable (results using gold only are similar), Table 4 presents posterior means
and standard deviations for technical and environmental efficiency for four Barrick mines. Based on
an examination of point estimates, it seems that three of the mines (Pieria, Betze Post and Meikle)
have efficiencies that are basically the same as one another. This holds regardless of whether we
are talking about technical or environmental efficiency. The Porgera mine has slightly lower point
estimates of efficiencies. However, an examination of the posterior standard deviations indicates that
the differences in point estimates are very small. In short, the story coming out of table 4 is the same
as that from table 3. An examination only of point estimates indicates that mines operating in rich are
slightly more efficient than those operating in poor countries, but this difference is negligible relative
to the uncertainty in the point estimates (i.e. differences in posterior means are very small relative to

posterior standard deviations).

table 4 here

The previous discussion suggests that we need to interpret efficiency point estimates with caution,
since their posterior standard deviations can be quite large. With this warning in mind, figures 1
and 2 are histograms of the point estimates of environmental efficiency for each mine for rich and

poor countries, respectively,® using the same models as for table 4. If we simply average the point
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estimates of all mines in developed countries we obtain an average efficiency of 0.68. The same number
is obtained for poor countries. On the whole, the spread of efficiencies in these two figures is similar.
Rich countries have a very small number of mines that are extremely environmentally inefficient (e.g.
point estimates of efficiency of around 0.1) which does not occur for the developing countries. However,
poor countries have more mines that seem moderately inefficient (e.g. efficiencies between 0.3 and 0.4).
But, overall, figures 1 and 2 are quite similar. Using single-output stochastic frontier methods, we
consistently find that there are no systematic differences in environmental efficiency between mines

operating in poor and rich countries (or between foreign and domestically-owned mines).

figures 1 & 2 here

It is also worth mentioning that we estimated these models using the same translog production
frontier described above, except that we included as inputs measures of capital (CAPITAL) and labour
(LABOR). Due to missing value problems, this massively reduced our data set to 351 observations
involving only 54 mines (as opposed to the 2211 observations on 419 mines used to produce the tables
and figures above). With a data set of this size, it is difficult to obtain precise estimates of parameters
or efficiencies. However, the point estimates of ¢o and ¢4 are similar to those found above, but their
posterior standard deviations were much larger. In this and other ways, the main findings noted
above are unaffected by incorporating CAPITAL and LABOR as explanatory variables (i.e. there is
no evidence of any systematic differences in environmental or in technical efficiency between mines in
rich and poor countries or between foreign and domestically controlled mines). We take this as some
evidence that the explanatory variables listed in Table 2 are adequate to approximate the production

frontier in our data set.

Multiple Output Results

The results in the previous section are suggestive, but either ignore the multiple output nature of gold
production or impose a particular shape to the output aggregator, ¢ (.) (i.e. by calculating the value of
metal produced we are using metal prices to construct g (.)). However, we can also estimate g (.) from
the data. This is what we do in this section. Details of the econometric methods used are provided in
Appendix A, using a constant elasticity of substitution form for g (.). Our first set of results assumes
there are three good outputs (gold, copper and silver) and the bad output, TAILINGS, is treated as
an input. As a measure of technical efficiency we use a gold-oriented measure (see equation 5 and the
discussion that follows for a motivation) and the input-oriented efficiency associated with the bad as
a measure of environmental efficiency (see equation 4).

For the sake of brevity, we do not provide complete results for this specification for the reason
that they are very similar to the single output results. For instance, the frontier has a similar shape
as described in table 2, and the efficiencies are similar to those plotted in figures 1 and 2. As to the

issue of whether efficiencies differ depending on whether mines are domestic/foreign-owned or are in a
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rich/poor country, we obtain the same finding as before: there do not seem to be systematic differences
between these categories of mines. As evidence of this, table 5 presents estimates of the coefficients in
the inefficiency distribution as well as the probability that they equal one. Similar to table 3, point
estimates of the coefficients on FOREIGN and RICH variables are slightly above 1 (indicating foreign-
owned and/or rich country mines are slightly more efficient than others) but these point estimates are
so close to one that the hypothesis that they equal one is supported by the data. As an example of
the kinds of findings implied by table 5, the average of the point estimates of environmental efficiency
for all mines in rich countries is 0.75, but for poor countries it is 0.69. For foreign controlled and
domestically controlled mines the numbers are 0.74 and 0.73, respectively. Thus, we are finding point
estimates slightly higher in foreign controlled and/or rich country mines, but relative to posterior

standard deviations these differences are small.

table 5 here

Our second set of results treats takes an inverse transformation of the bad output and treats it
as a good output (see section 2.2). Once again, the results using this specification are very similar to
those above. For the sake of brevity, we do not present results for this approach other than those in
the right-hand columns of table 5. As with all our specifications, there is no evidence for our variables

FOREIGN and RICH having any explanatory power for efficiency.

Conclusions

In this paper we have sought to determine whether there are any differences in the environmental
performance of gold mining firms that operate in poor as opposed to rich countries. We also examined
whether foreign controlled gold mines pollute more or less than their domestic counterparts. We have
investigated these issues using Bayesian stochastic frontier methods, paying particular attention to the
multiple output nature of gold production and the fact that gold mining produces immense amounts
of waste pollution. We have presented alternative ways of measuring technical and environmental
efficiency and investigated whether they can be related to mine characteristics such as whether the
mine is foreign or domestic controlled or whether it is located in a rich vs. a poor country.

This exercise was motivated by the question of whether there are pollution havens in the multi-
national gold mining industry. Rather than examine the location decisions of these multinational
firms in an attempt to infer a posteriori whether they may have gone to poor countries to avoid
high environmental compliance costs at home, we focus instead on the actual performance of indi-
vidual mines in the multinational firm once they have "set up shop". We argued that this kind of
analysis avoids potential measurement problems associated with the lack of effective monitoring and
enforcement of environmental regulations in developing countries. While some poor countries have
fairly strong environmental regulations on the books, the failure to monitor firm behavior may mean

that for all intents and purposes such regulations provide no effective disincentive for a firm to avoid
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locating there. Moreover, our data set allows us to measure the waste produced directly by each mine,
in the country in which it is produced. This is in opposition to studies that use disparate and largely
irrelevant (for the firm, at least) environmental regulations (e.g. lead content limits in gasoline), or
assume one aggregate measure of pollution (e.g. national SO? emissions) reflects aequately the degree
of environmental stringency facing a firm seeking to set up operations in a country.

We find that, regardless of whether we treat our waste measure as an input or a bad output, we
obtain qualitatively similar results. Regardless of whether we use gold, the value of all metals or
estimate a multiple-output production possibility curve from the data, we obtain qualitatively similar
results. For our policy questions of interest, our key (and very robust) finding is that there is no
evidence of any systematic differences in environmental or technical efficiency between mines in rich
vs. poor countries or between foreign vs. domestic owned mines.

While we find that there are no statistically significant variations in performance between these
different categories, we caution that this may not be the case if a fuller picture of the environmental
impacts of gold mining were to be examined. Some environmental impacts were not measured directly
in this study (e.g. our tailings measure includes things like cyanide but we do not have a precise
measure of how much cyanide) but are often regulated. Others are difficult to measure because they
remain unregulated do not exist. Still, for others, the nature and magnitude of their impact may
vary so greatly with the carrying and absorptive capacities of the home environment as to render a
statistical comparison meaningless. Nevertheless, the fact that there are no real appreciable differences
in the environmental performance of gold mining firms operating around the world in respect to our
pollution measure (which depends to a far lesser extent on country ecology and whose volume can be
linked to environmental impact to a far greater degree than other waste pollution) suggests that there
may be environmental similarities underlying gold mining operations worldwide.

This is not to say that multinational gold mining firms are not creating substantial amounts of
waste pollution, only that they are not producing appreciably more of it in poor than in rich countries.
Indeed, they are neither appreciably underperforming or overperforming in comparison to domestic
firms. Hence the empirical evidence of this study confirms the conclusions of most other industry /firm
and plant level studies of manufacturing industries: Foreign multinationals are not flocking to poor
countries or regions due to the relative laxity of their environmental regulations.

In short, the impact of environmental regulations on firm performance in the gold mining industry
is not best described by our research as one dominated by pollution havens. Pollution and environ-
mental degradation have been a large part of the industry since its inception. These impacts continue
to be huge, in rich and poor countries alike. This, despite technical innovations that have raised pro-
ductivity and the adoption by firms of increasingly strict "rich country" environmental codes. But,
even in countries where such regulation is weak or lacking, mining companies appear to be adhering
to the strictest self-regulation as currently defined by richer country regulations. Moreover, domestic
companies appear to be emulating them, at least with respect to our measured environmental indica-
tor. Whether this standard of environmental behavior is socially optimal or not is another question.

If it is not, as many believe, then the more relevant policy question may not be whether pollution
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havens exist at all, but whether regulatory chill best describes the context in which the global mining
industry operates. In this respect, we hasten to add that we are not talking about regulatory chill
as it has been described to exist only in poor countries. Rather, we are talking about the possibility
of a "global regulatory chill", a standard of performance defined by the richest country to which all
firms are adhering worldwide. Thus, the more relevant question for regulatory policy may be: If
environmental performance can indeed be raised with the current level of technology, what aspects of
the institutional context of rich countries has prevented it from happening? The next question then

becomes: What kind of intervention will lead to a rise in environmenal performance worldwide?
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Appendix A: Econometric Methods

In this appendix, we describe our Bayesian econometric methods. Motivation for this approach is
provided in previous work (e.g. Koop, Osiewalski and Steel, 1997). Advantages include the fact that
exact finite sample properties of all features of interest can easily be obtained. For instance, Bayesian
posterior standard deviations or credible intervals (i.e. the Bayesian analogue to standard errors and
confidence intervals) for mine-specific efficiency are obtained immediately. Given that firm-specific ef-
ficiencies can be imprecisely estimated in many empirical contexts, we argue that presenting a measure
of the uncertainty associated with an estimate of mine-specific efficiency is crucial. Standard imple-
mentations of DEA or index number approaches to not provide such measures of uncertainty. More
sophisticated DEA approaches can calculate confidence intervals using the asymptotically-justified
bootstrap. (See, e.g., Simar and Wilson 1998). In classical econometrics, it is also difficult to calculate
confidence intervals for efficiencies. Horrace and Schmidt (1996) provides a discussion of various meth-
ods for constructing confidence intervals for efficiencies. Note that these involve strong assumptions
and treat estimates of parameters as though they are equal to true values.

The Bayesian approach begins with a likelihood function (i.e. a joint distribution for our dependent
variables). In our case, this involves specifying a distribution for the good and bad outputs, given the
inputs. This is combined with a (relatively noninformative) prior to yield a posterior. The properties
of this posterior can be analyzed using Markov Chain Monte Carlo (MCMC) methods. Since these
methods have been developed in detail in Fernandez, Koop and Steel (2000; 2005), we will not provide
all the details here. Rather, in this section, we will provide an outline of the basic ideas; the reader is
referred to the previous work for full details.

In this appendix, we begin describe our econometric methods for models based on (2), (3), (4) or (5).
The basic notation we use is described in the text (e.g. around equation 1). In our mining application,
extensions of basic models of production are required since mines can be quite heterogeneous. Hence,
we add the notation z = (z1,..,2s) to denote s different geological characteristics of the mine (e.g.
ore grades). We will let i denote the " mine (i = 1,...,N) and ¢ denote the ¢ time period
(t =1,...,T;). Note that we have an unbalanced panel and use the notation NT to denote all our
observations. The output of a particular mine at a particular point in time is a p-dimensional vector
Yat) = Wat1) - Yatp)s and we assume a constant elasticity of substitution function form for

aggregate output can be expressed as:
1/q

p
9(Wiy) = Z 0‘3‘ y?z’,t,j) ’ (A1)
j=1

where ¢ > 1, a = (a1,...,ap) with oj € (0,1) for all j =1,...,p and Z§:1 a; = 1. For fixed values
of a and q, g(y(;1)) = constant defines a production possibility curve, i.e. a (p—1)-dimensional surface
consisting of all output vectors y(; ;) that are technologically equivalent. Note that the restriction ¢ > 1
ensures a negative elasticity of transformation between any two outputs. The interpretation of the

parameter a in (A1) is to deal with scaling of the outputs, which is, therefore, quite separate from the
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role of elasticity of transformation q.
We model the aggregate output g(y(; ;) using a conventional stochastic frontier specification. To

this end we define d; ;) = log(g(¥(i,+))), define the N'T-dimensional vector

0= (5(1,1)7 5(1,2)7 s 5(1,T1)7 ce 76(N,TN))/-

The next step is to specify a functional form for the production frontier. Before we do this, we
note that the maximum possible production from a mine will depend on its inputs and its geological

characteristics and, hence, we replace (1) by

9(y) = h(z, 2). (A2)

In our empirical work, we adopt a translog production frontier and, hence, the explanatory variables
in our stochastic frontier regression will consist of an intercept and all logged inputs and geological
characteristics as well as squares and cross products of these logs. That is, omitting (4,¢) subscripts

on the x and z variables for notational simplicity, we let:

Infh(z, 2)] = Bo + 0% B7 In(@) + 3201, 321« Bl In(a) In(z;)+
Doty 2o By In(zy) In(z) + 3072 B7 In(z) + 3271 3015 87 In(20) In(25).

To make the notation compact, let v(z(; ), 2(;4)) be a k-dimensional vector containing all these

(A3)

explanatory variables. In matrix notation, we can write a stochastic frontier model using the log of

aggregate output as the dependent variable:
0=VE—vy+e, (A4)

where V' = (v(2(1,1), 2(1,1)), - - - » V(Z(N, 1 )> 2N, T )" denotes an NT' x k matrix of translog explanatory
variables, [ is a k—vector containing all the regression coefficients in (A3) and ¢ is the conventional
Normal error which captures the fact that the frontier is not known exactly, but needs to be estimated
from the data. Formally, € follows an NT-dimensional Normal distribution with zero mean and
covariance matrix equal to o2In7.

Efficiency considerations arise from the fact that mines may lie below the frontier, thus leading
to a vector of deviations between (the log of) actual and maximum possible aggregate output. This
vector of deviations is labelled . It is usually reasonable to place some additional structure on
these deviations. To this end, we write v = Du, where D is a fixed NT x M (M < NT) matrix
and v = (z1,...,2p)". Through different choices of D, we can accommodate various amounts of
structure on the vector ~y of inefficiencies. For instance, taking D = Iy, the NT-dimensional identity
matrix, leads to an inefficiency term which is specific to each different mine and time period. For a
balanced panel, choosing D = Iy ® tp, where vp is a T-dimensional vector of ones and ® denotes
the Kronecker product, implies inefficiency terms which are specific to each mine, but constant over
time (i.e. “individual effects”). In our empirical section we make the latter choice for D, but with the

obvious extension to unbalanced panels.
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These assumptions lead to a key part of our likelihood function, that which relates to the aggregate
output:
(818, u,0) = fNT(8|VB — Du,0®In), (A5)

where f¥7(.|a, A) denotes the NT-variate Normal density function with mean a and covariance matrix
A. The model can be completed by assuming an exponential inefficiency distribution. That is, each
of the elements of v has an exponential distribution with mean parameter \.

For the case of a single output, (A5) is enough to specify the likelihood function and standard
Bayesian MCMC methods (e.g. Koop, Osiewalski and Steel, 1997) can be used to carry out Bayesian
estimation, inference and model comparison. However, for multiple-output production (A5) is not
enough since it is only a single equation but y(; ;) is a p-dimensional vector. That is, if we knew what
aggregate output was (i.e. if we knew what o and ¢ were), then (A5) would define the likelihood
function. However, we wish to estimate at a and ¢ from the data (i.e. we wish to estimate the shape
of the production possibility curve rather than assuming a particular shape) and, hence, (A5) alone is
inadequate. To express this important concept yet another way, note that (A5) is a model for 6 which
merely says what production possibility curve a mine is on. It does not tell us which precise point on
the production possibility curve that the mine is operating at.

Following Fernéndez, Koop and Steel (2000), we complete our model by considering the distribution
of the outputs within each of the production possibility curves. A convenient way of doing this, is to

obtain a measure which can be interpreted as the share of each individual output in the aggregate:

q,4
. %Gy =1 »
'7t" -—_ —mn a0 a______ —_— “ e
(66:9) Zle a?y?i,t,l)7 o

(A6)
where it can be seen that 0 < 7, ;) <1 and Z§:1 Ny = 1. To complete the specification of our
)- We adopt a Dirichlet (see, e.g., Poirier, 1995,

page 132) distribution which is a flexible and commonly-used distribution to model random variables

likelihood, we must specify a distribution for 7;, ;
which are shares.

The exact form of the likelihood function is provided in Ferndndez, Koop and Steel (2000) and
precise details of how Bayesian estimation and model comparison is carried out are provided there.
In particular, an MCMC algorithm is developed which provides random posterior draws from all the
parameters and for the deviation from the frontier (i.e. u or, equivalently, 7).

Our models allow for explanatory variables in the inefficiency distribution. We do this by extend-
ing our previous model to allow for the mean of the inefficiency distribution to dependent on mine

characteristics as:

s = Lo (A7)
j=1

where ); is the mean of the i'" element of v (i.e. the deviation from the frontier for mine ). We let

wi; for i = 1,..,N and j = 1,..,m denote the value of the 4t explanatory variable for the ¥ mine
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and allow for an intercept (i.e. w;; = 1 for all mines). The extension of the MCMC algorithm which
allows for (A.7) is described in (A.18) of Fernandez, Koop and Steel (2005). As described in the text,
the hypothesis that ¢; =1 is the hypothesis that the 4% explanatory variable (for j = 2,..,m) has no
effect on the inefficiency distribution. The Bayes factor comparing the model with ¢; =1 to ¢; # 1
can be obtained using the Savage-Dickey density ratio (see Koop and Steel, 2001, for details). The
probability that ¢; =1 can be obtained from this Bayes factor.

For all our models, we use the same proper but relatively noninformative prior hyperparameter
values described in the Appendix to Ferndndez, Koop and Steel (2005).

The final step required is to link the results from our statistical model defined by (A5) and (A6),
with our various measures of efficiency. That is, the statistical model specified in this section will
provide us with a posterior for the deviation from the frontier, v. We then have to transform this
back to provide us with a posterior for the efficiency measures defined in (2), (3), (4) and (5). These
transformations are provided in Fernandez, Koop and Steel (2005). For simplicity, we drop the (i,t)
subscripts in the following equations which should denote that each individual mine in each time
period will have a particular efficiency.

For radial output-oriented technical efficiency, Tro, we have
TrRo =€ . (AS)
For radial input-oriented efficiency, Try, we have:

In(r ) —b+ \/52—472211:1219‘527}
n\7r = ™ z s
i 25 S B

(A9)

where b =", (Bf + 251 B In (zj)> +2 721 D i< Bij In(21z5) and existence of the solution requires
that b2 > 4y > 71 > 1<; Bi;- For input l-oriented efficiency, we obtain:

—e + /el — 485, (A10)
287 ’

where e; = B + > % 877 In(25) + >_,<; 85 In(z;) + 35, B In(x;) and we need that el > 4y
For individual output-oriented efficiencies for the j** output, Toj, we have:

In(rp) =

n; 1/q
TOi = TRO , All
=m0 (o =) (At

where 7); is the “share” of output j described in (A6).

Appendix B: Data

Main sources of information for the data set include annual reports, press releases, other company

reports and websites. This is supplemented with information and statistics from international, regional
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and national mining publications. The mine-level data for this analysis were derived from these sources
and from a private mining consultancy group, the Raw Metals Group (RMG). The database used in
this study has detailed information on a range of characteristics related to gold mining production:
metal, grades, production information (metal and ore), resources, reserves, mining methods, and
contact details for each company. All production data are at the mine level. Country characteristic
data were derived from the World Bank Development Indicators (2001). Table 1 summarizes key

characteristics of variables measured in the study:
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Figure 1: Environmental Efficiencies of Mines in Rich Countries
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Figure 2: Environmental Efficiencies of Mines in Poor Countries
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Notes

!'We have one bad output and hence such a measure can be used. We note in passing that, if several bad outputs are
used, then environmental efficiency can be defined as a radial concept involving only the bads.

2This is particularly the case for cyanide use. In general, lower grades of ore require higher processing rates and
therefore will use more cyanide, producing more tailings in the process. However, the relationship between cyanide use
and tailings production will also depend on other factors, for example the geochemistry of the rock, the nature of the
mining process (open pit vs. underground), the size of the mine, and so forth. Note, too, that cyanide is the only active
form of the chemical, and as a result one can have very high WAD or total cyanide levels emitted but the chemical can
nonetheless remain inactive in the environment and pose no damage to living organisms. Climate will play an important
role in this outcome. Hence with cyanide and other non-geological measures of waste, it becomes more difficult to link
waste to environmental impact, or the volume of waste produced to the mine’s environmental performance. Simply
looking at volume of cyanide use, for instance, would not provide as meaningful an environmental bad measure as simply
using the volume of tailings produced.

3Formally, this is a specification for the mean of the distribution of the deviation from the frontier as defined in
Appendix A.

*Results for technical efficiencies and for the foreign-owned/domestically owned categories show similar patterns and,
hence, are not presented for the sake of brevity.
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