Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Forecasting in dynamic factor models using Bayesian model averaging

Koop, G.M. and Potter, S. (2004) Forecasting in dynamic factor models using Bayesian model averaging. Econometrics Journal, 7 (2). pp. 550-565. ISSN 1368-4221

[img]
Preview
PDF (strathprints007747.pdf)
strathprints007747.pdf

Download (252kB) | Preview

Abstract

This paper considers the problem of forecasting in dynamic factor models using Bayesian model averaging. Theoretical justifications for averaging across models, as opposed to selecting a single model, are given. Practical methods for implementing Bayesian model averaging with factor models are described. These methods involve algorithms which simulate from the space defined by all possible models. We discuss how these simulation algorithms can also be used to select the model with the highest marginal likelihood (or highest value of an information criterion) in an efficient manner. We apply these methods to the problem of forecasting GDP and inflation using quarterly U.S. data on 162 time series. For both GDP and inflation, we find that the models which contain factors do out-forecast an AR(p), but only by a relatively small amount and only at short horizons. We attribute these findings to the presence of structural instability and the fact that lags of dependent variable seem to contain most of the information relevant for forecasting. Relative to the small forecasting gains provided by including factors, the gains provided by using Bayesian model averaging over forecasting methods based on a single model are appreciable.