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Abstract

This paper develops a new approach to change-point modeling that
allows the number of change-points in the observed sample to be un-
known. The model we develop assumes regime durations have a Pois-
son distribution. It approximately nests the two most common ap-
proaches: the time varying parameter model with a change-point every
period and the change-point model with a small number of regimes.
We focus considerable attention on the construction of reasonable hier-
archical priors both for regime durations and for the parameters which
characterize each regime. A Markov Chain Monte Carlo posterior sam-
pler is constructed to estimate a version of our model which allows for
change in conditional means and variances. We show how real time
forecasting can be done in an efficient manner using sequential impor-
tance sampling. Our techniques are found to work well in an empirical
exercise involving US GDP growth and inflation. Empirical results
suggest that the number of change-points is larger than previously
estimated in these series and the implied model is similar to a time
varying parameter (with stochastic volatility) model.
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1 Introduction

Many recent papers have highlighted the fact that structural instability
seems to be present in a wide variety of macroeconomic and financial time
series [e.g. Ang and Bekaert (2002) and Stock and Watson (1996)]. The
negative consequences of ignoring this instability for inference and forecast-
ing has been stressed by, among many others, Clements and Hendry (1998,
1999), Koop and Potter (2001) and Pesaran, Pettenuzzo and Timmerman
(2006). This has inspired a wide range of change-point models. There are
two main approaches: one can estimate a model with a small number of
change-points (usually one or two). Alternatively, one can estimate a time
varying parameter (TVP) model where the parameters are allowed to change
with each new observation, usually according to a random walk. A TVP
model can be interpreted as having T'—1 breaks in a sample of size T'. Recent
influential empirical work includes McConnell and Perez (2000) who use a
single change-point model to present evidence that the volatility of US eco-
nomic activity abruptly fell in early 1984. In a TVP framework, Cogley and
Sargent (2001) model inflation dynamics in the US as continuously evolving
over time. In this paper we seek to blend these two approaches in a model
that approximately nests them.

To motivate why such a blend might be useful consider the case of a
small number of breaks and, in particular, the variance break in US eco-
nomic activity found by many authors around 1984 [see Stock and Watson
(2002) for a review]. In addition to the obvious question of why the volatil-
ity of activity declined, is a more immediate one: whether the decline be
sustained or is only a temporary phenomenon. Models with a small number
of structural breaks typically do not restrict the magnitude of change in the
coefficients that can happen after a break, but implicitly assume that after
the last break estimated in the sample there will be no more breaks. In
contrast, in the TVP model there is probability 1 of a break in the next new
observation. However, for the TVP model the size of the break is severely
limited by the assumption that coefficients evolve according to a random
walk. In the model we develop, a new break can be forecast after the end
of the sample and size of the break is partly dependent on the properties of
the previous regime, partly dependent on the history of all previous breaks
and partly has a random element.

Bayesian methods are attractive for change-point models since they can
allow for flexible relationships between parameters in various regimes and
are computationally simple. That is, if we have a model with M different
regimes, then hierarchical priors can be used to allow information about



coefficients in the j** regime (or the duration of the j* regime) to depend on
information in the other regimes. Such an approach can improve estimation
of coefficients. It is particularly useful for forecasting in the presence of
structural breaks since it allows for the possibility of out-of-sample breaks.
With regards to computation, use of a hierarchical prior allows the researcher
to structure the model so that, conditional on unknown parameters (e.g. the
change-points) or a vector of latent data (e.g. a state vector denoting the
regimes), it is very simple (e.g. a series of Normal linear regression models).
Efficient Markov Chain Monte Carlo (MCMC) algorithms which exploit this
structure can be developed. This allows for the estimation of models, using
modern Bayesian methods, with multiple change-points that are difficult
under the standard classical approach to change-point problems.

However, with some partial exceptions [e.g. Pesaran, Pettenuzzo and
Timmerman (2006) and Stambaugh and Pastor (2001)], we would argue
that the existing Bayesian literature in economics has not fully exploited
the benefits of using hierarchical priors. In addition, this literature has, fol-
lowing the existing frequentist literature, focussed on either models with a
small number of breaks or TVP models. Furthermore, as argued in Koop and
Potter (2004), some commonly-used Bayesian priors have undesirable prop-
erties. These considerations motivate the present paper where we develop a
model which draws on our beliefs that desirable features for a change-point
model are:

1. The number of regimes and their maximum duration should not be
restricted ex-ante.

2. The regime duration distribution should not be restricted to be con-
stant or monotonically decreasing/increasing.

3. The parameters describing the distribution of the parameters in each
regime should, if possible, have conditionally conjugate prior distribu-
tions to minimize the computational complexity of change-point mod-
els.

4. Durations of previous regimes can potentially provide some informa-
tion about durations of future regimes.

5. The parameters characterizing a new regime can potentially depend
on the parameters of the old regime.

6. The change-point model should be easy to update in real time as new
data arrives on the time series of interest.



The plan of this paper is as follows. In Section 2 we review the link
between change-points and hidden Markov chains. In Section 3 we develop
our new model of regime duration. In Section 4 we construct a method for
modeling the change in regime coefficients based on a similar hierarchical
structure to the TVP model. Section 5 gives an overview of the posterior
simulator used in our Bayesian analysis (a technical appendix contains more
details). This section also shows how sequential importance sampling (i.e.
particle filtering!) methods can be used with our model to carry out real
time forecasting in a computationally efficient manner. Section 6 contains
applications to US GDP growth and inflation as measured by the PCE
deflator. We compare the results of our approach with that of a single
structural break and a TVP model and find them to be much closer to
the latter. In general, we find our methods to reliably recover key data
features without making the potentially restrictive assumptions underlying
other popular models.

2 Change-Point Models and Hidden Markov Chains

In order to discuss the advantages of our model, it is worthwhile to begin
by describing in detail some recent work and, in particular, the innova-
tive model of Chib (1998) which has been used in many applications [e.g.
Pastor and Stambaugh (2001), Kim, Nelson and Piger (2002) and Pesaran,
Pettenuzzo and Timmerman (2006)].2 In terms of computation, our focus
is on extending Chib’s insight of converting the classical change-point prob-
lem into a Markov mixture model and using the algorithm of Chib (1996)
to estimate the change-points and the parameters within each regime.

We have data on a scalar time series variable, y; for t = 1,...,T and
let Y; = (y1,...,y:) denote the history through time i and denote the
future by Y = (yii1,...,yr)’. Regime changes depend upon a dis-
crete random variable, s;, which takes on values {1,2,...,M}. We let
S; = (s1,...,s:) and S = (s;41,...,57)". The likelihood function is
defined by assuming p (y¢|Yi—1,s: = m) = p(y|Yi—1,0m) for a parameter
vector 0,, for m = 1,..., M < T. Thus, change-points occur at times 7,,

! Partical filtering is sequential importance sampling with resampling. For our purposes,
resampling is not required (although we describe how it can be done).

In contrast, a recent influential Bayesian paper, Maheu and Gordon (2005), does not
apply such a hiearchical prior structure and, thus, is not directly comparable to the papers
discussed in this section.



defined as
Tm={t:seq1=m+1Lsg=m}form=1,..., M —1. (2.1)

Chib (1998) puts a particular structure on this framework by assuming
that s; is Markovian. Specifically he assumes,

pi fj=i#FM
1l—p; ifj=i+1

1 ifi=M

0 otherwise

Pr(s; = jlsi—1 =1) = (2.2)

In words, the time series variable goes from regime to regime. Once it has
gone through the m!* regime, there is no returning to this regime. It goes
through regimes sequentially, so it is not possible to skip from regime i to
regime i+2. Once it reaches the M regime it stays there (i.e. it is assumed
that the number of change-points in the sample is known). In Bayesian
language, (2.2) describes a hierarchical prior for the vector of states.?

To avoid confusion, we stress that change-point models can be parame-
terized in different ways. Many models indicate when each regime occurs by
parameterizing directly in terms of the change-points (i.e. 71,...,7ap-1).
Others are written in terms of states which denote each regime (i.e. St). It
is also possible to write models in terms of durations of regimes. In the fol-
lowing material, we use all of these parameterizations, depending on which
best illustrates the points we are making. However, we do stress that they
are equivalent. So, for instance, a time series of 100 data points with a break
at the 60" can be expressed as 71 = 60, or Sgop = 1 and S =2, or d; = 60
and da = 40 (where d,, denotes the duration of regime m).

There are many advantages to adopting the framework of Chib (1998).
For instance, previous models often involved searching over all possible sets
of break points. If the number of break points is even moderately large, then
computational costs can become overwhelming [see, for instance, the discus-
sion in Elliott and Muller (2006)]. By using the Markov mixture model,
the posterior simulator is recovering information on the most likely change-
points given the sample and the computational burden is greatly lowered,
making it easy to estimate models with many change-points. Appendix A
describes this algorithm (which we use, with modifications, as a component
of the posterior simulator for our model).

3 A non-Bayesian may prefer to interpret such an assumption as part of the likelihood,
but this is merely a semantic distinction with no effect on statistical inference [see, e.g.,
Bayarri, DeGroot and Kadane (1988)]. In Appendix A we discuss how Bai and Perron’s
(1998, 2003) methods can be re-interpreted in this way.



Chib chose to model the states’ transition probabilities as being con-
stants. One consequence of this is that regime duration satisfies a Geomet-
ric distribution, a possibly restrictive choice. For instance, the Geometric
distribution is decreasing, implying that p (d,,) > p (d,, + 1) which (in some
applications) may be unreasonable. In the model we introduce below, we
generalize this restriction by allowing regime duration to follow a more flex-
ible Poisson distribution.

Furthermore, the model of Chib (1998) assumes that exactly M regimes
exist in the data. In Koop and Potter (2004), we show how this implicitly
imposes on the prior a very restrictive form which will tend to put excessive
weight near the end of the sample. That is, the standard hidden Markov
model (i.e. without restrictions such as those given in equation 2.2) will use
probabilities

Prsp = M|sp—1 = M] = pypr, Pr[sp = M|sp—1 = M —1] = 1—ppr—1. (2.3)

To impose that exactly M regimes occur, this has to be changed to the equal
probabilities:

Pr[sp = M|sp_1 = M] = Pr[sp = M|sp_1 =M — 1] = 1. (2.4)

If M > 2, additional restrictions are required. To express these restrictions
in words, consider the case M = 3. If, in period T'— 1, we are not already
in the third regime, then it must the case that a regime switch occurs in
period T and this must be imposed on the model. Similarly, if, in period
T — 2, we are still in the first regime, then we must impose that regime
switches occur in both periods T'— 1 and 7', in order to ensure that M = 3.
In our previous work, we explored the consequences of such restrictions and
argued that they can have a substantial impact on posterior inference in
practice. We further argued that other sensible priors which impose exactly
M regimes will also run into similar problems. Partly for this reason, we
argued that it is important to develop a hierarchical prior which treats the
number of regimes as unknown. For the issue of forecasting, these issues are
even more important, since these prior restrictions occur at the end of the
sample, precisely where forecasting begins.

Chib (1998) did not consider the question of out-of-sample forecasting.
If one were to assume no additional breaks occur out-of-sample, forecasting
could be done in a straightforward fashion, based on the likelihood and prior
which hold at the end of the sample (i.e. p (yr|Yr—1,0) and p (0ar)). Such
an approach, of course, does not address the issue of forecasting when breaks
can occur out of sample. Pesaran, Pettenuzzo and Timmerman (2006) took



up the challenge of extending the Chib approach to address this latter issue.
They assume a constant transition probability matrix out-of-sample which
allows for a probability of a break occurring in each out-of-sample period.
Their approach is an attractive and, in many ways, a sensible one. However,
in adapting the approach of Chib (1998) in this manner, some problems arise.
Remember that, to impose exactly M regimes in-sample, restrictions such as
(2.4) must be imposed. But, out-of-sample, to allow for breaks to occur, it
is desirable to revert to an unrestricted transition probability such as (2.3).
Pesaran, Pettenuzzo and Timmerman (2006) explicitly assume that

1 ift<T
P[St—M|St1—M]—{ Y 1ft>T 5 (25)
with the restriction that Plsy = M| = 1. This seems an odd assumption

and, given it is at the end of sample, could conceivably have an important
influence on forecasting. To try and understand this assumption better,
consider what would happen if we increase the observed sample by one
observation. Most Bayesians would argue that any statistical procedure for
updating in response to the addition of an extra observation should satisfy
Bayes’ rule. However, the updating of Pesaran, Pettenuzzo and Timmerman
(2006) with an extra observation could be taken to imply:

1 ift<T+1

oy ift>T 41  Plsrs = M| =1,

P[St:M‘St_l :M] = {
which is inconsistent with (2.5) and violates Bayes’ Rule.

These problems arise due to the imposition of exactly M breaks in-
sample. Pesaran, Pettenuzzo and Timmerman (2006) partly address this
problem through considering models with different values for M and then
doing Bayesian model averaging. This is a sensible thing to do, but does
not fully address the problems noted above (i.e. a pile-up of probability
near the end of the sample and the difficulty in adapting the approach to
out-of-sample forecasting in a way which does not violate Bayes’ rule). In
the next section, we will propose our model with does not impose a fixed
number of breaks in-sample and, hence, does not run into these problems.

Another relevant paper is McCulloch and Tsay (1993). The model used
in this paper is different in many ways from Chib (1998) and Pesaran, Pet-
tenuzzo and Timmerman (2006). However, it does have regimes changing
with a certain probability. McCulloch and Tsay do not assume a fixed num-
ber of breaks and do not face the problems noted above since they assume
that the probability of a break occurring is constant for all observations (in



an extension, they allow this probability to depend on additional covariates).
In essence, whereas Chib (1998) allows the probability of a break in regime j
to be p;, in McCulloch and Tsay (1993) this is simplified to a single p. This
p can be estimated in-sample and then used in out-of-sample forecasting,
thus precluding the need for an assumption such as (2.5). However, the as-
sumption of a time- and regime-invariant transition probability is restrictive
in many macroeconomic contexts. Furthermore, it will share many of the
restrictive features of Chib (1998). For instance, the hierarchical prior for
regime duration will be a Geometric distribution.

In summary, the pioneering work of Chib (1998) followed by the work
of Pesaran, Pettenuzzo and Timmerman (2006) has changed the way many
look at change-point models. Both papers have had great influence and have
many attractive features. In terms of posterior computation, Chib (1998)
continues to be very attractive and, indeed, we use a modification of this
algorithm as part of our posterior simulator. However, the hierarchical prior
has some potentially undesirable properties which leads us to want to build
on these previous approaches.

3 A Poisson Hierarchical Prior for Durations

The above discussion illustrates some restrictive properties of traditional
hierarchical priors used in the change-point literature and leads to our con-
tention that it is desirable to have a model for durations which satisfies the
six criteria listed in the introduction. In this section we develop our alter-
native approach based on a Poisson model for durations.* This approach
does not restrict the number or maximum durations of regimes ex-ante, it
has a convenient conjugate prior distribution in the Gamma family and the
regime duration distribution is not restricted to be constant or monotoni-
cally decreasing/increasing. It also allows information about the duration
of past regimes to affect the duration of the current regime and potentially
the magnitude of the parameter change from old to new regime.

We use a hierarchical prior for the regime durations which is a Poisson
distribution. That is, p (dn|Ap) is given by:

dm —1=7p — (Tm—1+1) ~ Po(A\p,) (3.1)

4Of course, there are many other popular options for modeling durations other than
the Poisson. Bracqemond and Gaudoin (2003) offers a good categorization of different
possibilities and explains their properties. Our methods could be extended to deal with
any of these in a straightforward manner.



where Po(\,,) denotes the Poisson distribution with mean A,,. With this
hierarchical prior it makes sense to use a (conditionally conjugate) Gamma
prior on \,,. If we do this, it can be verified that p (d,,), the marginal prior
for the duration between change points, is given by a Negative Binomial
distribution.

To provide some intuition, remember that the assumption comparable
to (3.1) in the model of Chib (1998) was that the duration had a hierarchical
prior which was Geometric (apart from the end-points). Chib (1998) used a
Beta prior on the parameters. This hierarchical prior [and, as shown in Koop
and Potter (2004), the marginal prior p (d,,,)] implies a declining probability
on regime duration so that higher weight is placed on shorter durations. In
contrast, the Poisson form we use for p(d,,|A\;,) and the implied Negative
Binomial form for p (d,,) which we work with have no such restriction.

However, the prior given in (3.1) also has the unconventional property
that it allocates prior weight to change-points outside the observed sample.
That is, there is nothing in (3.1) which even restricts dy < T much less
dm < T for m > 1. We will argue that this is a highly desirable property
since, not only does this prior not place excessive weight on change-points
near the end of the sample, but also there is a sense in which it allows us to
handle the case where there is an unknown number of change-points. That
is, suppose we allow for m = 1, ..., M regimes. Then, since some or all of the
regimes can terminate out-of-sample, our model implicitly contains models
with no breaks, one break, up to M — 1 breaks (in-sample).? The desirable
properties of this feature are explored in more detail in Koop and Potter
(2004).5

Although our model is much more flexible than that used in Chib (1998),
computation is complicated by the fact that the matrix of transition prob-
abilities now depends on the time spent in each regime. To see why this
complicates computation, note that a key step in the Chib (1996) algorithm
(see Appendix A) requires calculating p (sy41|s¢, P) where P is the matrix of
transition probabilities given by (2.2). In the model of Chib (1998) this den-
sity is simple due to the constant transition probability assumption. How-
ever, in our model the transition probability is not constant. As discussed

>The specification of a maximum number of regimes, M, is made only for illustrative
purposes. In practice, our model does not require specification of such a maximum. In
our empirical work we set M = T which allows for a TVP model and an out-of-sample
break.

%In a different but related context (i.e. a Markov switching model), Chopin and Pelgrin
(2004), adopt a different approach to the joint estimation of number of regimes and the
parameters.



in Koop and Potter (2004) and developed in more detail in Appendix A,
Chib’s algorithm can still be applied in the case of a non-time homogenous
transition matrix.

To better understand this point, note that under the Poisson hierarchical
prior in (3.1) we can construct a finite element Markov transition matrix
for any observed sample, under the assumption that regime 1 started with
the initial observation.” For the second observation, the probability of a
transition from regime 1 to regime 2 is:

exp(—)\l))\‘lh_l

s~ )t (1 - i =)

PI‘[SQ = 2‘81 = l,dl = 1] = (32)

= exp(—A1),

where Zs_:lo e)(p(_s%)’\i is defined to be 0. This corresponds to the single pa;
in the Chib’s model. However, in the third period, depending on whether
a regime switch occurred in period 2, we would have to calculate Pr[s3 =
2|sg = 1,d;] for d; = 1 or 2 and Pr[s3 = 3|sa = 2,ds = 1]. In the following
period, we would have to calculate Pr[sqy = 2|s3 = 1,d;] for dy = 1,2 or 3,
Pr[sy = 3|s3 = 2,ds] for dy = 1 or 2 and Pr[sy = 4|s3 = 3,d3 = 1], and so
on.
In general, it can be confirmed that

exp(f)\m))\ff;”_l

PI‘[SH_l = m—l—l]st =m, dm] =
Fi
(3.3)
which must be evaluated for all T'—m possible value of d,,, and every possible
value of m from 1 through ¢. Thus, unlike with Chib’s model, the transition
probability matrix depends on the duration of the regime.

Another important issue arises which does not arise in models with a
known number of change-points. To motivate this issue, suppose that a true
data generating process with one change-point exists and data is observed
for t = 1,...,7. Assuming that T is large enough for precise estimation of
the true DGP, the posterior simulator will yield most draws which imply
two regimes within the observed sample (i.e. most draws will have s; = 1
or 2 fort =1,..,T) and s; = m for m > 2 will mostly occur for ¢t > T.

"This can be generalized to allow for the first regime to begin x < oo periods before
the initial observation. In an earlier version of the paper, we adopted such a specification
and showed how x could be treated as an unknown parameter.

10
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In this case, most of the regimes occur out-of-sample and there will be no
data information available to estimate their durations. So, if two regimes
exist, there will be a great deal of information to estimate A1 and Ao but
apparently none to estimate A\, for m > 2. In a Bayesian analysis we do
not necessarily have to worry about this. It is well known that if no data
information relating to a parameter exists, then its posterior is equal to its
prior (if the prior exhibits independence). Thus, if an independent prior is
used such that p (A1,...,Ap) =p(A1)---p(Ap) with

Am ~ G (gA,é)\), (3.4)

then posterior for A, in many of the regimes will simply be G <g B /\> 8

In theory, there is nothing wrong with using an independent prior such
as (3.4), and simplified versions of the methods described below can be
used for this case. Out-of-sample regimes will have durations which simply
reflect the prior, but this is not important insofar as one is interested in
in-sample results (e.g. estimating the number and timing of change-points
in-sample). However, if one is interested in forecasting, then out-of-sample
properties matter. In many applications, it is reasonable to suppose that
the duration of past regimes can shed some light on the duration of future
regimes. In order to accommodate such a structure, we modify (3.4) and
use a hierarchical prior of the form:

)\m |ﬁ)\ ~G (Q)\aﬁ)\) ’ (35)

where (3, is an unknown parameter (not a hyperparameter selected by the
researcher).”

This new parameter, which reflects the degree of similarity of the du-
rations of different regimes, requires its own prior and it is convenient to
have:

Byt~ G(E1/8,). (3.6)

8To simplify notation, we are assuming the A,,s to have the same prior. It is trivial to
relax this assumption.

9We could also treat a, as an unknown parameter. However, we do not do so since our
model already has a larger number of parameters and the additional flexibility allowed
would not be great. Choosing a, = 1 implies A, is drawn from the exponential distrib-
ution (with mean estimated from the data). Other integral choices for a;, imply various
members of the class of Erlang distributions.

11



To aid in prior elicitation, note that this configuration implies the prior
mean of d,, (after integrating out \,,) is

£
1+Q)\ <£1i ) )
it > 1.

It is important to understand the implications of any prior (Appendix C
discusses such properties by simulating from the particular prior used in our
empirical work). As discussed following (3.1), in the model we propose the
hierarchical prior where p (d,,|\y,) is Poisson, but if we integrate out A,
we get p (dp,|B,) being a Negative Binomial distribution. The unconditional
prior distribution, p (d,,) is found by integrating out ﬂ;l. This does not
have a closed form (Appendix A contains an expression for it that could
be evaluated numerically). In general p(d,,) inherits the flexible form of
P (dm|A\m) or p(dpy|By). However, it is worth mentioning that if ay, = 1
then we have the restrictive property that P(d,, = y) > P(d,, = y + 1).
This suggests that, for most applications, it is desirable to avoid such small
values for a,. It can also be shown that, for small values of §2, with ay =n
we have a high prior probability of a regime change every n periods. Such
considerations can be useful in prior elicitation.

In summary, in this section we have developed a hierarchical prior for
the regime durations which has two levels to the hierarchy. At the first level,
we assume the durations to have Poisson distributions. At the second level,
we assume the Poisson intensities (i.e. A;,s) are drawn from a common
distribution. Thus, out-of-sample \,,s (and, thus, regime durations) are
drawn from this common distribution (which is estimated using in-sample
data). This is important for forecasting as it allows for the prediction to
reflect the possibility that a change-point occurs during the period being
forecast.

4 Development of the Prior for the Parameters in
Each Regime

In the same way that the change-point framework of Chib (1998) can be used
with a wide variety of likelihoods (i.e. p(y:|Yi—1,$+ = m) can have many
forms), our Poisson model for durations can be used with any specification
for p (y|Yi—1, 8¢ = m) = p (y¢|Yi—1,0m). Here we choose a particular struc-
ture based on a regression or autoregressive model with stochastic volatility
which is of empirical relevance.

12



Many change-point models assume that the anything can happen to the
parameters after a regime change occurs. The issues which arise with such
an approach are elegantly expressed by Pastor and Stambaugh (2001) in an
application which used stock return data to investigate the equity premium.

"In standard approaches to models that admit structural breaks,
estimates of current parameters rely on data only since the most
recent estimated break. Discarding the earlier data reduces the
risk of contaminating an estimate of the equity premium with
data generated under a different [process]. That practice seems
prudent, but it contends with the reality that shorter histories
typically yield less precise estimates. Suppose... a shift in the
equity premium occurred a month ago. Discarding virtually all
of the historical data on equity returns would certainly remove
the risk of contamination by pre-break data, but it hardly seems
sensible in estimating the current equity premium. Completely
discarding the pre-break data is appropriate only when the pre-
mium might have shifted to such a degree that the pre-break
data are no more useful ..., than, say, pre-break rainfall data,
but such a view almost surely ignores economics." Pastor and
Stambaugh (2001, pages 1207-1208).

The case for adopting a hierarchical prior which allows for some sort of
link between pre- and post-break parameters is, we believe, compelling in
many empirical contexts. The question arises as to what sort of hierarchical
prior is appropriate. We adopt a state space framework where the observable
time series satisfies the measurement equation

yr = X1, + exp(os,/2)et, (4.1)

where €; ~ N(0,1) and the (K + 1) state vector 05, = {¢,, 05, } satisfies the
state transition equations

¢m = ¢m—1+Um7 (42)
Om = Om—171 Un,
where Uy, ~ N(0,V), u, ~ N(0,n) and and X; is a K-dimensional row
vector containing lagged dependent or other explanatory variables. The

initial conditions, ¢y and o can be treated in the same way as in any state
space algorithm.!”

10Tn particular, in our state space algorithm the forward filter step is initialized with a
diffuse prior.

13



Note that this framework differs from a standard state space model used
in TVP formulations in that the subscripts on the parameters of the mea-
surement equation do not have t subscripts, but rather s; subscripts so that
parameters change only when states change. This difference leads to the
state equations having m subscripts to denote the m =1, ..., M regimes.

To draw out the contrasts with models with a small number of breaks,
note that the hierarchical prior in (4.2) assumes that 6,, depends on 6,,_1.
A similar approach is adopted in McCulloch and Tsay (1993) for the in-
tercept and error variance in an autoregressive model. In most traditional
models with a small number of breaks, one assumes 6,, and 6,,_1 are in-
dependent of one another [e.g. Chib (1998) or Maheu and Gordon (2005)].
Furthermore, it is usually assumed that the priors come from a conjugate
family. For instance, a traditional model might begin with (4.1) and then
let 6,, have the same Normal-Gamma natural conjugate prior for all m.
This approach, involving unconditionally independent priors, is not reason-
able in our model for reasons we have partially discussed above. That is,
our approach involves an unknown number of change-points in the observed
sample. So it is possible that many of the regimes occur out-of-sample. In
traditional formulations, there is no data information to estimate 6, if the
m!" regime occurs out-of-sample. The hierarchical prior of (4.2) alleviates
this problem. An alternative approach to this issue is given in Pastor and
Stambaugh (2001) and Pesaran, Pettenuzzo and Timmerman (2006). They
place a hierarchy on the parameters of the conjugate family for each regime.
For instance, Pesaran, Pettenuzzo and Timmerman (2006) assume that all
the 0,,,s are drawn from a common distribution. This is a standard approach
in the Bayesian literature for cross-section data drawn from different groups.
In a time series applications it has less merit since one wants the most recent
regimes to have the strongest influence on the new regime. This is a feature
that our hierarchical prior incorporates.

The state equations in (4.2) define a hierarchical prior which links 6,,
and 0,,_1 in a sensible way. This martingale structure is standard in the
TVP literature and, as we discuss later, it is computationally simple since it
allows the use of standard Kalman filter and smoother techniques to draw
the parameters in each regime. We use a standard (conditionally conjugate)
prior for the innovation variances:

vt o~ W (V) (4.3)
o~ Gl B)
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where W (4, a) denotes the Wishart distribution!! and we assume that vy, >
K +1.

Many extensions of this basic model for the link between regimes can be
handled in a straightforward fashion by adding extra layers to the hierarchi-
cal structure. The innovation variance in the state equations can be allowed
to be different (i.e. 7 and V' can be replaced by 7,, and V;,, and a hierarchical
prior used for these new parameters). Furthermore, in some applications, it
might be desirable for the duration in a regime to effect 6,, (e.g. if regime
m — 1 is of very short duration, it is plausible that 6,, 1 and 6,, are more
similar to one another than if it was of long duration). Such considerations
can be incorporated in a hierarchical prior for 6,,. For instance, in an earlier
version of this paper, we had a prior which incorporates both such features
as:

vy—K—17"

Vel W(M)

[)‘m—lvn]_l

v, —1 )

N~ Gy,

where Vy and V), are parameters to be estimated. In our applications to
macroeconomic time series extension this did not outperform the simpler
version. Nevertheless, in some applications such an extension might be war-
ranted and it is worthwhile mentioning that the requisite methods can be es-
timated using straightforward extensions of the MCMC algorithm described
in the next section.

Note also that (4.1) and (4.2) assume that regime changes occur at the
same time for the coefficients and the volatility. Having separate regime
structures for these is conceptually straightforward but practically compli-
cated. In some cases, the researcher may want to simplify our model by
having change-points only in some of the parameters. For instance, in an
autoregressive model for GDP growth it might be plausible that the AR
coefficients are constant and only the volatility is changing over time. We
adopt such a specification for GDP growth in our empirical section.

To summarize, the prior we have developed has the form:

"'We parameterize the Wishart distribution so that if Z ~ W (A, a) and 45 subscripts
denote elements of matrices, then E (Z;;) = aA;j. The scalar a is a degrees of freedom
parameter.
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P (01,001, A1y A, Vi, B)
=TI P Ol 1, Vi) p CnlB) } 280} (Br) 2 (Vi)

where p (0,,]0m—1,V,n) is given by (4.2), p(y) is diffuse, (V,n) is given by
(4.3), p (Am|By) is given by (3.5) and p (8,) is given by (3.6).

(4.4)

5 Posterior and Predictive Simulation

In this section we outline the general form of the MCMC algorithm used to
estimate the model. Precise details are given in Appendices A and B. To
simplify notation we define © = ( 1 ...,0%4)/ and A = ( 1 ...,)\’M)/. Note
that our MCMC algorithm draws a sequence of states (S7) that includes
the values for the regime durations, d,,. Furthermore, we will set M =T
so that we can nest a standard TVP model. However, it is possible to set
M < T if one wishes to restrict the number of feasible regimes.

Our MCMC proceeds by sequentially drawing from the full posterior
conditionals for the parameters St,0, A\, V,7n, 8,. The posterior conditional
p(S7|Yr,©,\,V,n,B,) = p(Sr|Yr,0,)) can be drawn using the modified
algorithm of Chib (1996) described in Appendix A with transition proba-
bilities given by (3.2) and (3.3). p(©|Y7, St, A\, V,n,3,) can be simulated
using extensions of methods of posterior simulation for state space models
with stochastic volatility drawing on Kim, Shephard and Chib (1998) and
Carter and Kohn (1994). That is, the TVP model is a standard state space
model and thus, standard state space simulation methods can be used di-
rectly. However, when regimes last more than one period, the simulator has
to be altered in a straightforward manner to account for this.

The (conditional) conjugacy of our prior implies that, with one exception,
p (Am|Yr, ST,0,V,n,5y) for m = 1,..., M have Gamma distributions. The
exception occurs for the last in-sample regime and minor complications are
caused by the fact that this last regime may not be completed at time 7.
For this Poisson intensity we use an accept/reject algorithm.

Standard Bayesian results for state space models can be used to show
D (V_l |Yr, S7,0,\,n, ﬁA) is Wishart and p (77_1 \Yr, S7,0,\,V, BA) is Gamma.
P (ﬁ;1|YT, St,0,\,V, 77) can also be shown to be a Gamma, distribution.

5.1 Predictive Distributions

Suppose interest centers on the predictive density for yryp, given data
through time 7. The basic idea of our simulation algorithm is that, if we
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knew the model parameters (i.e. A, 3)), the relevant regime (i.e. spyp) and
the coefficients which applied in this regime (i.e. 63), then the distribution
of y7,p, would simply be Normal. That is,!?

p(yT+h|YT’5T+h = {m’dm}7‘9m’)‘vv’777/8)\) (51)
. 2
_ 1 exp [_ (yr+n — Xe4n®m) } '
21 exp(om) 2exp(om)

Thus, if we can obtain posterior draws for s7p, 0m, A, V, 1, 5, we can obtain
an estimate of the predictive density as:

2w (vl sran = {m®,d7}, 6500, v0), 50, 507)
p(yrnl¥T) = 7 :

where (1) superscripts, for r = 1, .., R, denote these draws (after dropping an
appropriate number of burn-in replications). Our MCMC algorithm above
describes how draws of A\, V|7, 5 are taken. In this subsection, we describe
how draws of spp, and 6,, are taken (i.e. how out-of-sample draws of regimes
and accompanying coefficients are done). We focus on a particular approach
that complements the sequential importance sampler introduced in the next
section.

We start by noting that we have access to the predictive distribution
for the states, {p(sr4n|Y7T,0,\, 5\) : h=1,..., H} at each iteration of the
MCMC algorithm described in the preceding section by combining p(sr|Yr, ©, A, )
with the transition function of the chain. Thus, draws of (spy1,...,S74H)
can be easily obtained.'> We emphasize that these draws are conditional on
© (which includes draws up to M). Note also that we require only a single
draw of (sp41,...,871m) at each iteration of the MCMC algorithm. Given
these draws of the regimes, we can then take draws {0, , :h=1,...,H}.
If the regime at time T'+ H is less or equal to M then the elements of © are
used and no additional random draws are required. If the regime number
goes above M then we can use (4.2) to generate new values of 0., .

We stress that this approach will provide us with a predictive density
that satisfies Bayes’ rule. That is, it correctly combines information in the

12Note that, in the case of the autoregressive model, X;;1 is known and this density
can be immediately calculated. For out-of-sample forecasting for A > 1, X is produced
by iterating on the known values at T" using the sequence of autoregressive coefficients.

13 For some values of h regime numbers greater than M might have non-zero probability.
At this occurrence the Negative Binomial distribution implied by 8, can be used to obtain
an appropriate regime duration draw.
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data with the probabilistic structure implied by the model using the rules
of conditional probability.

5.2 Sequential Importance Sampling

Models such as ours are often used for real time forecasting. As new data
comes in, we want to update our forecasts. Of course, we could simply re-run
our MCMC algorithm with a data set augmented by this new data and then
calculate predictive densities as described in the previous section. However,
given its computational demands, it is desirable to update forecasts without
re-running the MCMC algorithm. In this section, we briefly describe how
sequential importance sampling methods [these are a popular type of particle
filter methods, see, e.g., Doucet, Godsill and Andrieu (2000) or Liu and Chen
(1998)] can be used with our model to achieve this goal.

Let z; = (0},S;) denote the unobserved states and, for simplicity, sup-
press conditioning arguments (all the p.d.f.s below are conditional on the
model parameters (A, V,n,3,)). The sequential importance sampler (SIS),
is designed for models (such as ours) which can be written in terms of p (y4|2¢)
and p (z¢|z¢—1). Based on a sample of size T', posterior and predictive features
depend upon p (Z7|Yr) which can be obtained using our MCMC algorithm
where Z; = (21, ...,2)". Now suppose a (T + 1)* observation becomes avail-
able and, thus, posterior and predictive features depend on p (Zpy1|Yri1)
which, by Bayes’ rule, can be written as:

P (Yr+1lzr41) p (2141 |27)
p(yr+1|Y7)

Since p (Z7|Yr) and p (yr4+1|Yr) are impossible to directly evaluate simula-
tion methods are required. The likelihood, p (yr41|274+1), is evaluated using
(5.1).

We can, of course, use the MCMC algorithm described above to evaluate
properties of p (Zp41|Yr4+1). However, an alternative is to use importance
sampling. If we take an importance function of the form:

p(Zr1|Yri1) = p (Zr|YT)

7 (zr41|Z7, Yr41) ,

then the importance sampling weights become:

~ p(Zr|YT)p (yre1|zre1) p (2r41|27)
Wr+1 = .

7 (2741|127, YT 41)

If a (T + 2)"? observation becomes available and, hence, posterior and pre-
dictive features depend on p (Z742|Y7r4+2) which can also be handled using
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importance sampling. But note that the importance sampling weights now
become:

P (Yri2l2r2) p (2r12]2041)

7 (2742|2141, Y142)
In other words, we can recursively update the importance sampling weights
rather than evaluating them anew, reducing computational effort. In gen-
eral, importance sampling weights for T' 4 h, are given by:

Wr42 = W41

P (Yr+nlzren) p (2renlzren—1)
T (2r4n| Zr4h—1, YT41)

WT+h = WT+h—1

Computationally, such an approach can be very efficient. That is, instead
of running a (computationally) demanding posterior simulation algorithm
h+1 times (i.e. using data through period 7'+ for i = 0,1, .., h), the main
posterior simulation algorithm is run only once, and then SIS allows for the
fast and efficient updating as new information arises.

To be precise, if we begin using our MCMC algorithm for data through
period T, we obtain r = 1, .., R draws. These can be interpreted as impor-
tance sampling draws, each with an equal weight of %. In period T + h,
using SIS we have R draws, each with weights wgih. As with any impor-
tance sampler, posterior properties of any feature of interest can be found by
taking a weighted average of drawn features of interest using the normalized

weights:
(r)
(r) WTih

wT+h — W
D1 Wi,
Furthermore, the predictive likelihood' for H observations can estimated
from the SIS output as:

R ()
Do Wrin
7 .
The predictive likelihood for a single observation can be estimated using:

P(Yr+1s - Yr+H|YT) =

R
p(yT+h|YT) = Zp(yT+h|YT’ Zgj-h—lﬂ A(T)’ V(T)’ n(r)’ ﬁg\r))@gj_h_r

r=1

' As Poirier (1995), Chapter 8 discusses there is a lot of controversy in the frequen-
tist literature about the meaning of predictive likelihood. In our Bayesian context the
interpretation is clear: it is the predictive distribution evaluated at the observed value for
yr+n. Equivalently, it can be interpreted as a marginal likelihood, treating treating the
posterior at time 7" as a prior.
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In theory, SIS could be used to draw the states for all time periods (i.e.
we could set T" = 0 in the preceding equations and simply have h index
time). However, all sequential importance sampling algorithms have the
property that the variance of the importance sampling weights increase over
time (i.e. the algorithm becomes less efficient as h increases). If the variance
of the importance sampling weights becomes too large, then the importance
sampling estimates become dominated by only a few of the draws. One
simple measure of the effective number of draws is

E;ffh - i
+ 1 R (r)

R Zr:1 (/wir—ﬁ—h)2
There are numerous methods [ see, e.g., Doucet, Godsill and Andrieu (2000)
or Liu and Chen (1998)] which attempt to minimize this problem by using
a resampling technique when this effective number of draws moves below a
threshold. In our case, we have the advantage that if the effective number
of draws falls below the threshold value we can always switch back to our
original MCMC algorithm.

An obvious choice for the importance function in our case is our hierar-

chical prior evaluated at the parameters values after observing the first T°
observations:

T (2r4nl Zr4n—1, Yrn-1) = P (2r4nl2ren—1, A, Vin, By) .

To simulate from this importance function we use the same approach as
described for producing the predictive distributions.

5.3 Computation Issues in Context

Computation issues are important in the change-point literature. Unless
the number of change-points is very small, the computational burden can
be quite demanding. Bayesian approaches, such as ours and Chib (1998),
which adopt a hierarchical prior for the change-points, will have a much
lower computational burden than those which involve evaluating something
(e.g. a likelihood or a posterior) at every possible set of change-points.
Our MCMC approach largely draws on standard algorithms and, hence,
programming costs are not large. Our approach will involve a computational
burden greater than Chib (1998) since our transition probabilities depend on
the duration spent in each regime (see equation 3.3 and surround discussion).
However, in both Chib (1998) and our model, the durations do not enter
the likelihood (i.e. p(y¢|Yi—1,8: =m) = p(y¢|Ye—1,0m) does not depend
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on the duration of the regime), so the added computational burden only
enters through draws of the states. With a modern personal computer, the
computational burden of our approach is still trivial for data sets of the
length typically used by macroeconomists.!> Furthermore, methods such
as sequential importance sampling can be used to lessen the computational
burden in real time forecasting exercises. In our model the ability to use
the sequential importance sampling produces a tremendous reduction in net
computation because most of the draws required are produced during the
MCMC algorithm and just need to be stored.

The approach of Pesaran, Pettenuzzo and Timmerman (2006) shares
many of the computational advantages of Chib (1998). However, some of
the benefits of assuming a constant transition probability within a regime
(except at the end of the sample), are lost in their forecasting exercise since
their assumed (out-of-sample) hierarchy is not conditionally conjugate and
the sequential importance sampling approach is not available due to their
imposition of a fixed number of change-points in sample. This contrasts to
our hierarchy, which is conditionally conjugate.

In contrast to our approach, the influential non-Bayesian approach of
Bai and Perron (1998) is less computationally burdensome. Bai and Perron
start from the observation that there are T'(7'+1)/2 ways of partitioning the
sample. This is true in our approach as well, since we allow for any number
of breaks in sample. Bai and Perron then show how an efficient dynamic
programming method can be used to find the global least squares minimizer
i the special case of all parameters in a linear conditional mean changing
at each change-point with no restrictions on the coefficients changes. In
this special case they require only O(T?) computations to find the least
squares minimizer. Of course, without restrictions on the time between
change-points the minimum is achieved with a perfect fit. To get around
this issue, the minimizer is found by imposing additional restrictions on the
minimum time between change-points. Inference is then performed by using
insights from the asymptotic distribution. Note that this implies that a
different partition of the data with the same number of change-points but
a slightly higher value for the least squares minimand receives no weight
in the inference. A strength of the Bayesian approach is that it can put

5 A recent paper by Giordani and Kohn (2006) develops computationally efficient meth-
ods for the model of Chib (1998) and a simple version of our model. The authors show
how, in either of these models, break dates can be drawn in O(T) operations by integrat-
ing out the states analytically. It is probable that these methods can be extended for
the general version of our model and, thus, computation will be very efficient indeed. We
include some discussion on this point in Appendix A.
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weight on this different partition. This would be particularly important
for forecasting. In Appendix A we discuss how a frequentist could use a
hierarchical approach to obtain information on the probability of change-
points at the global minimizer for the regime coefficients found using Bai
and Perron’s algorithm

Relative to the approach of Bai and Perron (1998, 2003), we would have
the same O(T?) computational burden if we had assumed the standard con-
stant transition probability matrix (and, we note this holds for a much wider
class of models than Bai and Perron). As we have seen, many Bayesian ap-
proaches adopt this constant transition probability matrix, assuming a fixed
number of regimes occur in-sample. Our model is somewhat more compu-
tationally demanding than this. However, a simplified version of our model
with a constant transition matrix would not be more computationally de-
manding. Note that such a version of our model would allow for an unknown
number of regimes in sample. In the case where the transition probability
was the same across regimes, the sequential importance sampler would be
available and the net computational difference for real time updating would
favor our method in most cases.

6 Application to US Inflation and Output

In economics, many applications of change-point modeling have been to the
decline in volatility of US real activity and changes in the persistence of
the inflation process. With regards to GDP growth, Kim, Nelson and Piger
(2003), using the methods of Chib (1998) (assuming a single change-point),
investigate breaks in various measures of aggregate activity. For most of
the measures they consider, the likelihood of a break is overwhelming and
Bayesian and frequentist analyses produce very similar results.' On the
other hand, Stock and Watson (2002) present evidence from a stochastic
volatility model that the decline in variance might have been more gradual,
a thesis first forward by Blanchard and Simon (2001).

Clark (2003) discusses the evidence on time variation in persistence in
inflation. Cogley and Sargent (2001, 2005) present evidence of time variation

16Since such papers consider only a single break, it is relatively easy to evaluate all the
possible break points. Kim, Nelson and Piger (2003) assume that the conditional mean
parameters remain constant across the break and the only change is in the innovation
variance. If one allowed both the conditional mean and variance to break and assumed an
exchangeable Normal- Gamma prior then the model can be evaluated analytically. This
was the approach followed in Koop and Potter (2001) and it has the advantage that one
can also integrate out over lag length in a trivial fashion.
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in the inflation process both in the conditional mean and conditional variance
of a smooth type. Stock (2001) finds little evidence for variation in the
conditional mean of inflation using classical methods and Primiceri (2005)
finds some evidence for variation in the conditional variance but little in the
conditional mean.

Accordingly, in our empirical work we investigate the performance of our
model using quarterly US GDP growth and the inflation rate as measured by
the PCE deflator (both expressed at an annual rates) from 1947Q2 through
2005Q4. With both variables we include an intercept and two lags of the
dependent variable as explanatory variables. We treat these first two lags as
initial conditions and, hence, our data effectively runs from 1947Q4 through
2005Q4.

In addition to our Poisson hierarchical model for durations we also
present results for standard TVP with stochastic volatility [see Stock and
Watson 2002] and one-break models estimated using Bayesian methods.
Both of these can be interpreted as restricted versions of our model. The
TVP model imposes the restrictions that the duration of each regime is one
(i.e. sy =t for all t). The one-break model imposes the restriction that
there are exactly two regimes with s; = 1 for ¢t < 7 and sy = 2 for t > 7
(and the coefficients are completely unrestricted across regimes with a flat
prior on the coefficients and error variances).!”

Appendix C describes our selection of the prior hyperparameters a,§ ) '3 010 @n,KV
and vy, and comparable prior hyperparameters for the TVP model. Here
we note only that we make weakly informative choices for these. In a more
substantive empirical exercise we would carry out a prior sensitivity analy-
sis. The researcher interested in more objective elicitation could work with
a prior based on a training sample.

6.1 Estimation Results

Figure 1 presents information relating to the TVP for GDP growth. The
posterior means of the coefficients (i.e. ¢, for t = 1,..,T') are given in Figure
la and the volatilities (i.e. exp(o4/2) for t =1,...,T) in Figure 1b. Figure
2 presents similar information from the one-break model.

Consider first results from the standard TVP and one-break models for
real GDP growth. The most interesting findings for this variable relate to
the volatility. Both models indicate that volatility is decreasing substan-

1"We restrict the prior for the change-points such that the change-point cannot occur
in the first or last 5% of the sample.
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tially over time, with a particularly dramatic drop occurring around 1984.'8
However, with the TVP model this decline is much more smooth and non-
monotonic than with the one break model. The question arises as to whether
the true behavior of volatility is as suggested by the TVP model or the one
break model. Of course, one can use statistical testing methods which com-
pare these alternatives. However, an advantage of our model is that it nests
these alternatives. We can estimate what the appropriate pattern of change
is and see whether it is the TVP or the one break model — or something in
between.

Our findings relating to volatility of GDP growth are not surprising given
previous results starting with McConnell and Perez (2000). There is some
evidence from the TVP model that volatility started to decline in the 1950s
but this decline was reversed starting in the late 1960s. The single break
model (by construction) does not show any evidence of this. It dates the
single break to be at or very near to 1984. With regards to the autoregres-
sive coefficients, with both models the posterior means indicate that suggest
that little change has taken place. However, posterior standard deviations
(not presented) are quite large indicating a high degree of uncertainty. In
the literature [e.g. Stock and Watson (2002)] these findings have been inter-
preted as implying that there has been no change in the conditional mean
parameters.

In light of this approximate constancy of the coefficients (and to illustrate
our methods in an interesting special case), we estimate our model with
variation only in the volatilities and not in the coefficients. That is, the
first equation in (4.2) is degenerate (or, equivalently, V = Og k). Figure
3 plots features of the resulting posterior. Figure 3a, by definition, implies
constant values for all the coefficients. Figure 3b plots the posterior mean
of the volatility. Figure 3c plots the posterior mean of the regime number
by date (for the TVP model it would be a 45 degree line. For the one-
break model if there was considerable posterior mass at one date it would
be a step function from 1 to 2 at this date). Figure 3b is slightly smoother
but otherwise quite similar to the comparable TVP result in Figure 1b, but
differs quite substantially from the one-break model result. Thus, we are
finding evidence that the TVP model is more sensible than the one-break
model. However, we found such evidence in the context of a model which
could have allowed for very few breaks. In fact, as can be seen in Figure 3c,

18Note that, in the one break model, the posterior means of the coefficients and volatil-
ities, conditional on a particular change-point, will behave like step functions. However,
when we present unconditional results, which average over possible change-points, this
step function pattern is lost as can be seen in the figures.
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our model indicates that there are about 40 regimes in-sample, as opposed
to the 2 regimes of the one-break model or 227 of the TVP model.

Let us now turn to inflation. Given findings by other authors and an
interest in the persistence of inflation, we use the unrestricted version of our
model and allow the AR coefficients to change across regimes. Figures 4,
5 and 6 present results from the TVP, one break and our models, respec-
tively. Figure 4a, containing the two autoregressive parameters from the
TVP model, shows a slight but steady increase in the persistence of inflation
up to the late 1970s followed by a steady decrease. The fact that the level
of inflation increased throughout the 1970s and early 1980s before declining
in the 1990s is picked up partly through the pattern in the intercept.'® The
volatility of inflation shows a similar pattern, with a noted increase in the
1970s and early 1980s. These sensible results are found by both the TVP
model and our model and are consistent with evidence presented in Cogley
and Sargent (2001), although at odds with some of the evidence presented in
Primiceri (2005). The single break model indicates quite different patterns
(see Figure 5). It wants to put the single break near the beginning of the
sample, totally missing any changes in the level, persistent or volatility of
inflation in the 1970s and early 1980s. One could force the break later by
adopting a prior that the change-point is later in the sample. As one can see
from the concavity in Figure 6¢ our model is able to assign many change-
points early in the sample then adapt to a slower rate of regime change later
in the sample.

When comparing results from the TVP and one-break model to ours, as
a general rule we are finding our model supports many change-points rather
than a small number and thus the movements of the conditional mean and
variance parameters are closer to the TVP model. We take this as evidence
that our methods are successfully capturing the properties of a reasonable
data generating process, but without making the assumption of a break
every period as with the TVP model. That is, we are letting the data tell
us what key properties of the data are, rather than assuming them. Our
empirical results also show the problems of working with models with a small
number of breaks when, in reality, the evolution of parameters is much more
gradual.

YNote, of course, that the unconditional mean depends on the intercept and the AR
coefficients.
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6.2 Predictive Exercise

The previous section focusses on estimation for our model, the TVP model
and a one-break model. In order to compare these different models, we
could calculate marginal likelihoods in order to construct Bayes’ factors or
posterior odds ratios using standard methods. For instance, the methods
of Chib (1995), Chib and Jeliazkov (2001) or Gelfand and Dey (1994) can
be used to estimate the marginal likelihood in change-point models. More
simply, information criteria such as the Schwarz criteria can be used to
approximate marginal likelihoods. However, in these models (which are very
parameter rich) marginal likelihoods can be sensitive to priors. Accordingly,
we prefer to compare models using predictive criteria such as the predictive
likelihood discussed in Sections 5.1 and 5.2. As discussed in Section 5.2,
these can easily be calculated using sequential importance sampling.

Table 1 presents predictive likelihoods for a period of two years at the
end of our sample. That is, we use data through period 2003Q4 to calculate
predictive distributions for each quarter through 2005Q4 and then evaluate
the predictive at the observed outcome. It can be seen that, in terms of
overall forecast performance over these 8 observations, our model does sub-
stantially outperform the one break model and (less substantially) the TVP
model.

Table 1: Joint Predictive Likelihoods for 2004,/2005
Our Model | TVP One Break

GDP Growth | 9.77x10~" | 6.06x10~7 | 4.93x10~"

Inflation 3.69%x107% | 3.31x1076 | 1.75x1076

Table 1 presents results relating to joint performance over two years. In
a real time forecasting exercise, one might also be interested in forecasting
performance one quarter at a time (where each quarter new data is used
to update the predictive density). To illustrate how this can be done, we
carry out a pseudo real-time forecasting exercise for 2004 and 2005. That
is, beginning in 2003Q4 we construct the predictive distribution for 2004Q1,
then use data through 2004Q1 to predict 2004Q2, etc.. A simple summary
of forecasting performance involves seeing where the actual outcome lies in
these one-period-ahead predictive distributions. In particular, we can calcu-
late where the actual outcome lies in the predictive cumulative distribution
function. Table 2 presents this information for our three models and two
data series. An informal examination of Table 2 suggests all three of our
models are predicting GDP growth fairly well. None of the outcomes are too
far out in the tails of the predictive distributions. This is unsurprising since
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2004-2005 were years of stable GDP growth with little evidence of structural
change. More formal metrics of predictive performance can be developed by
noting that, if a model is correct, then probabilities such as those in Table
2 should be drawn from the Uniform [0,1] distribution [see, e.g., Diebold,
Gunther and Tay (1998)]. Using the numbers in Table 2, the standard Chi-
squared statistics for testing for Uniformity [e.g., Wonnacott and Wonnacott
(1990), pages 550-551] are 9.5, 9.5 and 12.0 for our model, the TVP and the
one break model, respectively. This provides some evidence that our model
and the TVP are forecasting comparably to one another and the one break
model is doing slightly worse. Note that the frequentist 0.05 critical value is
16.9 so we cannot reject the hypothesis of Uniformity for any of our models.

For inflation (which was somewhat more erratic in the 2004-2005 period),
the Chi-squared statistics for testing Uniformity of the numbers in Table 2
are 12.0, 9.5 and 17.0 for our model, the TVP and the one break model,
respectively. Hence, for inflation we are finding the TVP model forecasts
slightly better than the other models. Furthermore, the frequentist hypoth-
esis that the one-break model is correct can be rejected at the 5% level of
significance.

Table 2: Predictive Probability of Being Less than Actual Outcome

GDP growth Inflation

Our Model | TVP | One Break | Our Model | TVP | One Break
2004Q1 | 0.581 0.579 | 0.485 0.966 0.967 | 0.942
2004Q2 | 0.525 0.456 | 0.582 0.935 0.935 | 0.768
2004Q3 | 0.601 0.636 | 0.635 0.125 0.096 | 0.035
2004Q4 | 0.514 0.499 | 0.535 0.732 0.711 | 0.737
2005Q1 | 0.628 0.649 | 0.663 0.852 0.830 | 0.781
2005Q2 | 0.533 0.510 | 0.557 0.503 0.471 | 0.400
2005Q3 | 0.726 0.732 | 0.733 0.840 0.822 | 0.760
2005Q4 | 0.186 0.179 | 0.225 0.805 0.755 | 0.653

7 Conclusions

In this paper we have developed a change-point model which nests a wide
range of commonly-used models, including TVP models and those with a
small number of structural breaks. Our model satisfies the six criteria set
out in the introduction. In particular, the maximum number of regimes in
our model is not restricted and it has a flexible Poisson hierarchical prior
distribution for the durations. Furthermore, we allow for information (both
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about durations and coefficients) from previous regimes to affect the current
regime. The latter feature is of particular importance for forecasting.

Bayesian methods for inference and prediction are developed and applied
to real GDP growth and inflation series. We compare our methods to two
common models: a single-break model and a time varying parameter model.
We find our methods to reliably recover key data features without making
the restrictive assumptions underlying the other models.
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Appendix A: A Modified Version of Chib (1996)’s
Algorithm

Bayesian inference in the model of Chib (1998) is based on a Markov Chain
Monte Carlo (MCMC) algorithm with data augmentation. If © = (67, .. ., Q’M)/
and P = (p1,...,pnm—1) and we expand the definition of the state to include

the duration of a regime in addition to the number of the regime then the
algorithm proceeds by sequentially drawing from

O, P|Yr, St (A1)

and

Sr|Yr, O, P. (A.2)

Simulation from the latter is done using a method developed in Chib (1996).
This involves noting that:

p(Sr|Yr,0,P) =p(sr|Yr,0,P)p (sr—1|Yr,ST,0,P)  (A.3)
P (St|YT7 St+17eup) P (Sl‘YTa‘SQa @7P) :

Draws from s; can be obtained using the fact [see Chib (1996)] that
p (s¢|Yr, S, 0, P) o< p(s¢]Y:, 0, P)p (sp41]st, P) . (A.4)

Since p (s¢+1|8¢, P) is the transition probability and the integrating constant
can be easily obtained (conditional on the value of s;11, s; can take on only
two values in this case and a finite number in the general one), we need
only to worry about p(s:|Y;, 0, P). Chib (1996) recommends the follow-
ing recursive strategy. Given knowledge of p (s;—1 = m|Y;—1,0, P), we can
obtain:
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p (st = k[Yi—1,0, P)p (y¢|Yi—1,0)

p (st = k|Y:,0,P) = , (A.5)
Somek1 P (st =m[Yi-1,0, P)p (ye|Yi-1,0m)
using the fact that
k
p(si =klYi1,0,P) = > paup(s:-1=m|Y;-1,0,P), (A.6)
m=k—1

for k =1,.., M. The recursive algorithm is started with p (s;|Y7,©, P).

Thus, the algorithm proceeds by calculating (A.4) for every time period
using (A.5) and (A.6) beginning at ¢ = 1 and going forward in time. It is
assumed that the first period of the first regime is the first period of the
sample. Then the states themselves are drawn using (A.3), beginning at
period T and going backwards in time. Of course, the draw of sy will be of
a regime number and a duration. The duration will locate the time when
the regime started, thus it immediately identifies the last change-point in
sample. This information is used to find the appropriate time period at
which to evaluate (A.4) which will involve only the draw of the duration
of the penultimate regime. The draw of the duration of the second regime
directly gives the duration of the first regime and this is the final iteration.

It is worth mentioning that our modified sequence of transition functions
could also be used in frequentist approaches to find p (S¢|Yr,©, P). For
example, the approach of Bai and Perron (1998, 2003) could be implemented
with a duration distribution that was Uniform (subject to a restriction that
a certain minimum number of observations occur in each regime). The
parameters in © could be evaluated at the global minimizer using their
fast dynamic programming algorithm. As in Koop and Potter (2004) the
support of the Uniform distribution could be some multiple of the current
sample size allowing for out-of-sample breaks. In these cases one could either
repeat the drawing of the states as outlined above for many different initial
draws of sp or implement the smoother [see Hamilton (1994)]. Obviously
the storage and programming requirements of the smoother are quite high so
in practice the easiest approach would be to use multiple draws to estimate
p (ST’YT, @, P) .

As discussed in footnote 15, Gordiano and Kohn (2006) note that in
some cases it might be preferable to use a different approach to sampling
the change-points. Their approach conditions on all draws of the regimes
except 1, to update the regime classification one state at a time and uses an
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adaptive sampling scheme. In contrast, we update the regime classification
without considering previous draws of the states. They give an example
where the Poisson intensity defining regime duration is the same across
regimes and the properties of the Poisson distribution can be used directly
rather than forming a Markov chain. In our case, with the hierarchical prior,
their method could be used by evaluating the (marginal) prior distribution
on the duration. This is obtained by integrating out £, from

() [Tl ) ) e

Using a change of variable

b= % !

= - =—

1+ 3 8

we have

ggl d + o d p §1 p

S ,\ —1

e 1%* 1 —p)4m () exp(—&, ——)dp.
F(§1)< ax(m >/ ) lL—p ( *21—1))

In some cases it might be computationally more efficient to numerically
evaluate this integral and use the approach of Giordiano and Kohn.

Appendix B: MCMC Algorithm

The posterior conditionals used in our MCMC algorithm are described in
Section 5. Further details are provided in this Appendix. The states are
drawn from p (S7|Yr,©, ) using a modification of the algorithm of Chib
(1996) as described in Appendix A.

p(©|Y7, ST, \, V,n,3,) can be drawn from using methods of posterior
simulation for state space models with stochastic volatility drawing using
standard algorithms for state space models [e.g. Kim, Shephard and Chib
(1998), Carter and Kohn (1994), DeJong and Shephard (1995) or Durbin
and Koopman (2002)]. These algorithms can be used for our change-point
models with simple modifications. To fix ideas consider the simplest case
where X; contains only an intercept. Then

d ZYst—Ym—Qém'i_gmy

st=m
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with e, ~ N(0,exp(oy,)/dpm). The draw of the ¢,, (conditional on o) could
then proceed using the analyst’s favorite algorithm in the time scale given
by the change points. For o, (conditional on ¢,,) one can apply a sto-
chastic volatility algorithm [e.g. Kim, Shephard and Chib (1998)] using the
measurement equation:

Z (Ytsz - ¢m)2 - eXp(Um)5m7

st=m

where €, ~ N(0,d,,) in the time scale given by the change-points. Since,
most algorithms analyze the stochastic volatility conditional on draws for
the ¢,,, the extension to the case where X; contains more than just an
intercept is immediate. We take draws of o, with a one-step sampler using
an acceptance/rejection approach from Kim, Shephard and Chib (1998).
In the case where X; contains more than just an intercept we proceed by
first forming the predictive distribution for ¢,, using the transition equation:

I

ifsg=s_1=m
¢st:{ d)m t t—1

O FUnt1 ifsg=m+1,5i_1=m

and then use the Kalman filter to derive:

p(¢s,|Y2, ST) for t € {s111 # s¢}.

We then draw ¢,, from p(¢,,.|Yr, ST) and proceed back through M —
1,...,1. We use the Carter and Kohn (1994) sampler, modified for the
time scale given by the change-points. For out-of-sample regimes we use the
transition equation and values of V and 7 to generate draws starting from
the value of ¢,;.

The Poisson intensities are drawn from p (A, |Yr, ST,0,V, 1, 5,) for m =
1,..,M . These posterior conditionals are:

Am‘YTa STV7 m, /B)\ ~ G (amvgm)

where

Q= QA+dm
B = [B3'+1]7

Note, however, that for the last in-sample regime d,, is not observed. Sup-
pose the ongoing regime has lasted D,, periods by the end of the sample.
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Then the conditional posterior is proportional to

exp(—Am)A}

exp(_Am/Bm))‘?nmil Z y| =

y=Dmy—1
oo

= exp(—Am(l+1/B,,)) A% Z

y=Dpm—1
< exp(=Am(1+ 1/B,)) A0 exp(Am)
= exp(_)\m/gm))‘?nmil'

A

oyl

Thus, a simple accept/reject step is available to draw A, for the regime
with on-going duration. For large values of D,, relative to the values of A\,
implied by the Gamma distribution based on @, 3;11 the rejection rate will
be high. This should not happen to frequently, but if it does this step can
be converted into a Metropolis-Hastings one.

We next turn to the posterior conditionals p (V‘1|YT,ST,@,)\,7],B>\)
and p (n_l\YT, ST,0, A, V,ﬁA). These are:

V_1|YTa ST? @7 >‘a n~ w (VV7§V) )

where
M -1
— /
VV = KV + Z (¢m - ¢m—1) ((bm - ¢m—1)
m=1
and
Furthermore,
71 f— )
n ’YT,ST,@,)\NG(OZW,BH)
where
. M
Qpy = Qn + ?
and
_ 1
By = 1



Finally, we have

ﬁ;”YTa ST: @7 )‘a V7 n~ G (aﬁ73§1>

where

55 :MQ)\ +§1

and
_ M 1
Bs=2 dntz
m=1 §2

Appendix C: Properties of the Prior

In the body of the text, we developed some theoretical properties of the
prior. However, given its complexity, it is also instructive to examine its im-
plications using prior simulation. Accordingly, in this appendix, we illustrate
some key properties of our prior for the hyperparameter values used in the
empirical work. We use informative priors. For highly parameterized mod-
els such as this, prior information can be important. Indeed, results from
the Bayesian state space literature show how improper posteriors can result
with improper priors [see, e.g. Koop and Poirier (2004) or Fernandez, Ley
and Steel (1997) for more general results]. One strategy commonly-pursued
in the related literature [see, e.g., Cogley and Sargent (2001, 2005)] is to
restrict coefficients to lie in bounded intervals such (e.g. the stationary in-
terval). This is possible with our approach. However, this causes substantial
computational complexities (which are of particular relevance in our model
where many regimes can occur out-of-sample and reflect relatively little data
information). Training sample priors can be used by the researcher wishing
to avoid subjective prior elicitation.

In this paper, we choose prior hyperparameter values which attach ap-
preciable prior probability to a wide range of reasonable parameter values.
To aid in interpretation, note that our data is measured as a percentage and,
hence, changes in oy, in the interval [—0.5,0.5] are the limit of plausibility.
For AR coefficients, the range of plausible intervals is likely somewhat nar-
rower than this. With regards to the durations, we want to allow for very
short regimes (to approach the TVP model) as well as much longer regimes
(to approach a model with few breaks). We choose values of the prior hy-
perparameters, a,,§ 1€y ays én’KV and vy, which exhibit such properties.
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Figure C plots the prior for key features assuming o, = 12, § =&, =
ay, oy = 1.0,@77 =0.02,Vy = 0.1Ix and vy, = 3K. Note that, by construc-
tion, the priors for all our conditional mean coefficients are the same so we
only plot the prior for the AR(1) coefficient. Figure C1 plots the prior over
durations and it can be seen that the prior weight is spread over a wide
range, from durations of 1 through more than 50 receiving appreciable prior
weight. Figures C2 and C3 plot prior standard deviations for the state equa-
tion innovations (see 4.2). It can be seen that these are diffuse enough to
accommodate anything from the very small shifts consistent with a TVP
model through much bigger shifts of a small break model.

For the TVP model, we make the same prior hyperparameter choices
(where applicable). The prior for the one break model has already been
described in the text.
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