Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Forecasting and estimating multiple change-point models with an unknown number of change points

Koop, G.M. and Potter, S. (2004) Forecasting and estimating multiple change-point models with an unknown number of change points. Working paper. University of Leicester.

[img]
Preview
PDF (strathprints007745.pdf)
Download (397Kb) | Preview

    Abstract

    This paper develops a new approach to change-point modeling that allows for an unknown number of change points in the observed sample. Our model assumes that regime durations have a Poisson distribution. The model approximately nests the two most common approaches: the time-varying parameter model with a change point every period and the change-point model with a small number of regimes. We focus on the construction of reasonable hierarchical priors both for regime durations and for the parameters that characterize each regime. A Markov Chain Monte Carlo posterior sampler is constructed to estimate a change-point model for conditional means and variances. We find that our techniques work well in an empirical exercise involving U.S. inflation and GDP growth. Empirical results suggest that the number of change points is larger than previously estimated in these series and the implied model is similar to a time-varying parameter model with stochastic volatility.

    Item type: Monograph (Working paper)
    ID code: 7745
    Notes: Revised paper Review of Economic Studies, Vol.74, Issue 3, pp.763-789
    Keywords: econometric models, time-series analysis, Bayesian, statsitcs, econometrics, economics, Markov chain, Monte Carlo, hierarchical prior, Economic Theory, Statistics
    Subjects: Social Sciences > Economic Theory
    Social Sciences > Statistics
    Department: Strathclyde Business School > Economics
    Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 20 Mar 2009 11:52
    Last modified: 06 Sep 2014 13:52
    URI: http://strathprints.strath.ac.uk/id/eprint/7745

    Actions (login required)

    View Item

    Fulltext Downloads: