Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Forecasting and estimating multiple change-point models with an unknown number of change points

Koop, G.M. and Potter, S. (2004) Forecasting and estimating multiple change-point models with an unknown number of change points. Working paper. University of Leicester.

[img]
Preview
PDF (strathprints007745.pdf)
strathprints007745.pdf

Download (406kB) | Preview

Abstract

This paper develops a new approach to change-point modeling that allows for an unknown number of change points in the observed sample. Our model assumes that regime durations have a Poisson distribution. The model approximately nests the two most common approaches: the time-varying parameter model with a change point every period and the change-point model with a small number of regimes. We focus on the construction of reasonable hierarchical priors both for regime durations and for the parameters that characterize each regime. A Markov Chain Monte Carlo posterior sampler is constructed to estimate a change-point model for conditional means and variances. We find that our techniques work well in an empirical exercise involving U.S. inflation and GDP growth. Empirical results suggest that the number of change points is larger than previously estimated in these series and the implied model is similar to a time-varying parameter model with stochastic volatility.