Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Efficient posterior simulation in cointegration models with priors on the cointegration space

Koop, G.M. and Leon-Gonzalez, Roberto and Strachan, Rodney W. (2005) Efficient posterior simulation in cointegration models with priors on the cointegration space. Working paper. University of Leicester.

[img]
Preview
PDF (strathprints007740.pdf)
strathprints007740.pdf

Download (296kB) | Preview

Abstract

A message coming out of the recent Bayesian literature on cointegration is that it is important to elicit a prior on the space spanned by the cointegrating vectors (as opposed to a particular identi�ed choice for these vectors). In this note, we discuss a sensible way of eliciting such a prior. Furthermore, we develop a collapsed Gibbs sampling algorithm to carry out e¢ cient posterior simulation in cointegration models. The computational advantages of our algorithm are most pronounced with our model, since the form of our prior precludes simple posterior simulation using conventional methods (e.g. a Gibbs sampler involves non-standard posterior conditionals). However, the theory we draw upon implies our algorithm will be more e¢ cient even than the posterior simulation methods which are used with identi�ed versions of cointegration models.