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Abstract

In many applications involving time-varying parameter VARs, it
is desirable to restrict the VAR coefficients at each point in time to be
non-explosive. This is an example of a problem where inequality re-
strictions are imposed on states in a state space model. In this paper,
we describe how existing MCMC algorithms for imposing such inequal-
ity restrictions can work poorly (or not at all) and suggest alternative
algorithms which exhibit better performance. Furthermore, previous
algorithms involve an approximation relating to a key integrating con-
stant. Our algorithms are exact, not involving this approximation. In
an application involving a commonly-used U.S. data set, we show how
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this approximation can be a poor one and present evidence that the
algorithms proposed in this paper work well.

Keywords: Bayesian, state space model, Markov Chain Monte
Carlo, Metropolis-Hastings

1 Introduction

Time varying parameter (TVP) models have a long history in economics
(e.g. Cooley and Prescott, 1973, 1976). Recently, they have been influential
in empirical macroeconomics in papers such as (among many others) Cogley
and Sargent (2001, 2005), Kim and Nelson (1999), Primiceri (2005) and Stock
and Watson (2007). Such papers use (sometimes restricted variants) of state
space models involving a measurement equation:

Yy = Ziy + €4 (1)

and a state equation

0 =011+ 1y, (2)

where 1, is an p x 1 vector of observations on the dependent variables, 6,
an m X 1 vector of unobserved states, ¢, are independent N (0, H;) random
vectors and 7, are independent N (0, Q) random vectors for t = 1,..,T.! The
errors in the two equations, ¢; and 7,, are independent of one another for all
t and 5.2 Z, is the appropriate p X m matrix of data on explanatory variables.
For instance, Cogley and Sargent (2001, 2005) and Primiceri (2005) use TVP-
VARs and, hence, each row of Z; contains lags of all dependent variables and
an intercept and other deterministic terms and 6, are the VAR coefficients.
Stock and Watson (2007) use a model where v, is inflation, Z; = 1 and 6, is
interpreted as underlying inflation.

Econometric inference in the model defined by (1) and (2) can be carried
out using standard state space methods involving the Kalman filter. For
instance, Carter and Kohn (1994), DeJong and Shephard (1995) and Durbin
and Koopman (2002) provide algorithms for drawing 67 = (6, .., 6)" which
are commonly used in Bayesian empirical work as part of a Markov Chain

IStock and Watson (2007) allow for Q to vary over time as well. To allow for this could
be done using extensions of the methods developed in this paper.
2This is the standard assumption, but it can easily be relaxed if desired.



Monte Carlo (MCMC) algorithm. However, these methods only work when
07 is unrestricted (i.e. it is not subject to any inequality restrictions). In
many macroeconomic applications, we wish to impose inequality restrictions
on the states. For instance, the model of Stock and Watson (2007) uses an
unrestricted state space model which implies that underlying inflation follows
a random walk and, thus, can grow in an unbounded fashion. If central banks
have implicit or explicit inflation targets, this may be unreasonable and the
researcher may wish to limit underlying inflation to lie within bounds (see
Koop and Potter, 2008). As another example, in TVP-VAR models it can be
desirable to impose stability on the TVP-VAR at each point in time. This
leads papers such as Cogley and Sargent (2001, 2005) to restrict ; to be non-
explosive. This involves the inequality restriction that the roots of the VAR
polynomial defined by 6, lie outside the unit circle.? Indeed, in the absence of
such inequality restrictions (or a very tight prior), Bayesian TVP-VARs will
place a large amount of a priori weight on nonsensical paths for the states.
This can cause substantive problems for empirical work. For instance, even
a small amount of posterior weight in explosive regions for ; can lead to
impulse responses or forecasts which have counter-intuitively huge posterior
means or standard deviations.

Such considerations motivate why imposing inequality restrictions on the
states in state space models can be very important. However, with the one
exception which we will discuss below (i.e. the algorithm described in Cog-
ley and Sargent, 2005), to our knowledge there do not exist any MCMC
algorithms for drawing from state space models subject to inequality re-
strictions*. The purpose of this paper is to fill this gap. We develop several
MCMC algorithms and investigate their performance in the TVP-VAR used
in Primiceri (2005).

To informally motivate our algorithms, note that they improve on two
possible strategies. First, the naive researcher may think that a standard
algorithm such as that of Durbin and Koopman (2002) can be used, with
the added restriction that, if a drawn 6, violates the inequality restriction,
then it can be immediately discarded and new ;s can be drawn until one

3Note, though, that Cogley and Sargent (2001, 2005) do not restrict the intercepts.
Thus, the intercepts have a random walk structure and the elements of y; have unit roots.
To rule out unit root behavior, one can further restrict the intercepts to bounded intervals.

*See Koop, Leon-Gonzalez and Strachan (2008) for a Bayesian analaysis of state space
models where the states are subject to equality restrictions at some time periods but not
others.



satisfies the restriction. Such a strategy is simply wrong: it does not lead to a
valid posterior simulator. A second strategy, adopted by Cogley and Sargent
(2005), is to use an algorithm such as Carter and Kohn (1994) or Durbin and
Koopman (2002) to draw an entire vector of states, 67 = (), .., 6%)’, and then
discard this entire vector of states if any of the #;s violate the constraints.
In this paper, we elaborate why their strategy also runs into problems. One
of these problems is that it is very easy to run into cases where virtually all
of the draws are discarded and computation is not feasible in a reasonable
amount of time. For instance, in an unrestricted TVP-VAR, even in the very
well-behaved case where all of the ;s have posterior medians which are non-
explosive, it is common for posterior standard deviations to be fairly large
(and, thus, some posterior probability is attached to explosive regions of the
parameter space). If each of T states has a small chance of violating the
restrictions, it is not hard to get the probability that at least one of them
will violate the restrictions being very nearly one in every draw. In such
cases, the algorithm of Cogley and Sargent (2005) will discard nearly every
draw. It is not hard to find empirical problems where such an algorithm can
take billions and billions of draws without accepting even a single one.

In this paper, we develop improvements on these two sorts of strategies.
We begin with the development of a multi-move algorithm similar to that of
Cogley and Sargent (2005), but not involving a certain approximation which
they use. We recommend this algorithm for cases where the unrestricted
posterior indicates high probability in favor of the restrictions holding for all
of the states. We also develop a single-move algorithm which draws the states
one at a time. This algorithm is recommended for cases where the multi-move
algorithm discards virtually every candidate draw. However, because it is a
single-move algorithm it can mix more slowly.

The remainder of the paper is organized as follows. In the next section,
we derive our MCMC algorithms. In the third section, we present empirical
evidence relating to their performance. The fourth section concludes.

2 MCMC Algorithms for State Space Models
Subject to Inequality Restrictions

In this section, we derive several MCMC algorithms for drawing from the
state space model defined by (1) and (2) subject to the inequality restrictions



that 6; € A for some region A. For instance, in our empirical work we focus
on the TVP-VAR case and the restriction is that the roots of the matrix
polynomial defined by the VAR coefficients in 6, lie outside the unit circle.
The contributions of this paper relate to drawing ¢, and (). Thus, to keep the
notation as uncluttered as possible, we do not include H; as a conditioning
argument in the posterior conditional distributions given below. It is common
to specify a multivariate stochastic volatility form for H; and, in our empirical
work, we do so (see the Appendix for details). However, this merely adds
more blocks to our MCMC algorithm of standard form, so we do not discuss
it in this section. Also, we abstract from treatment of the initial condition
for the states, §y and just assume a standard treatment is used (and do not
list 0 as a conditioning argument in the probabilities below). For instance,
if a regression effect (i.e. a term with constant coefficient, 7,0 is added
to the measurement equation), then we have 6y = 0. Alternatively, as in
Durbin and Koopman, a Normal prior such as 6y ~ N (6,,V,) can be used
for initial condition. Thus, we focus on the states 87 = (6}, ..,67) and the
error covariance matrix in the state equation (). We use the notation that
y" = (y},..,y}) is the entire sample.

There are some general results that are used by some or all of the MCMC
algorithms we develop. We describe these here. Our multi-move algorithms
are Metropolis-Hastings algorithms which take candidate draws from the
posterior for the model defined by (1) and (2) without the inequality re-
strictions. We refer to this model as being “unrestricted” and place “U”
subscripts on densities relating to this model. Standard algorithms (e.g.
Durbin and Koopman, 2002) can be used to provide MCMC draws from the
unrestricted model.

All of the MCMC algorithms below involve draws from the unrestricted
posterior of (), conditional on the states, py (Q|9T, yT) . This can also be done
using standard methods. For instance, if we follow the common practice of
using a Wishart prior: Q! ~ W (gQ, Q‘l) ,then the unrestricted posterior
for @' (conditional on the states) is Wishart:

Q" y" ~ W (70,07 (3)

where

fQ:T‘f‘ZQ

and
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T
Q=@+ (0 —01) (6 — 6,1
t=1

In our empirical work, we use a training sample to choose the prior hyper-
parameters (see Appendix for details).

2.1 Multi-move algorithms

We begin by describing two multi-move Metropolis-Hastings algorithms for
drawing the unobserved states. That is, in these algorithms, the previous
draw of the sequence of states is not used directly in the construction of the
new draw. An alternative is to use a single move sampler that generates the
draw of 6, conditional on 0_, where 0_, = (6},..,0,_,,0,,,,..,0%) . Usually
multi-move samplers are preferred because of the reduction in dependence
across draws of the chain they produce. But, in the present case, a single
move sampler might have certain advantages since (for reasons discussed
previously) the multi-move algorithm could lead to extremely low Metropolis-
Hastings acceptance probabilities (i.e. where virtually all candidate draws
are rejected).

The posterior of interest is p (GT, Q]yT), with prior p (HT, Q) and likeli-
hood p (yT|(9T, Q) Given the structure of the model, the likelihood can be
written as:

T

p ("7, Q) = [ [ p(wl6r. @), (4)

t=1
where, for notational simplicity, we are not explicitly listing Z; as a condi-
tioning argument. Note that the likelihood for the unrestricted posterior also
has this form so that py (y710", Q) = p (y7]0", Q). Furthermore, we will also
use the same prior for @ so that py (Q) = p (Q).

The prior is given by:

p(07,Q) = p(0"1Q)p(Q) (5)
x {Hl(et € A)pU(9t|9t_1,Q)}p(Q),



where py(04|0;-1,Q) is given by (2), without the restrictions imposed, and
1(.) is the indicator function. Multiplying prior by likelihood, we obtain the
posterior:

{1 P00, Qp(l0, Q) 2 (@)
m (y")

p (QT’ Q|yT) = ) (6)

where m (y”) is the marginal likelihood and p(6;]6;_1, Q) is obtained from
the state equation with the restrictions imposed:

1(0; € A)

p(0t|9t—17 Q) X m
2m2

O exp |5 0= 0 Q7 (00— 1)

and we denote the integrating constant for this prior by R (6;_1,Q). Note
that we have a relationship between our prior and the comparable prior for
the unrestricted model

L0, € A)pu(6:16:-1,Q)

p(0:]0:-1,Q) = R0 1,Q) ) (7)

fort=1,..,T.

If we use the same treatment of the initial condition in the unrestricted
and restricted model, the unrestricted posterior is exactly the same as (6)
except that the };((g:ffg) terms are omitted and m (yT) is replaced by my (yT)
where the latter is the marginal likelihood for the unrestricted posterior.

The standard MCMC algorithm (without inequalities) involves drawing
from py (671Q,y") and py (Qly”,0") and we can use these as candidate
generating densities in a Metropolis-Hastings algorithm when dealing with
the restricted model. This requires us to calculate the Metropolis-Hastings
acceptance probabilities. Consider first the states and let s = 1,..,5 in-
dex (post burn-in) draws from the algorithm and superscripts (s) denote the
accepted draws. Let superscripts (*) denote candidate draws so that 6T
is a candidate draw from py (0T|yT, Q(S*I)) which is accepted with proba-
bility ay. The formula for Metropolis-Hasting acceptance probability, using
PU (9T|yT, Q(S_l)) as a candidate generating density, is (see, e.g., Koop, 2003,
page 94):




D (HT — HT(*)’yT, Q(s—1)) Py (HT _ 9T(s—1)|yT’ Q(5—1)>

py = min 1
p <9T = T Dy, Q(S‘”) pu (HT =0TyT, Q(S‘”)
— i | )y
[ we (s — 1)
where
o (07 =6"Oly", Q1)
Wo (X)) =
e (7 =7l )
and
p <9T _ GT(S_DLUT, Q(s—l))
wy(s—1) =

pu (07 = 7 D]yr, e}

Note that, since p (0" |y",Q) = p(6",Qy") /p (Qly") (and the same
holds for the unrestricted model), we can just plug in the formula for p (HT, Q|yT)
instead of p (HT]yT, Q) in the formula for the acceptance probability (and the
two terms p (Q|y”) will cancel out as will the two py (Q|y”) terms). Thus,
we can use our previous derivations to say:

0(*) A 9()9() (s— 1) % _
my (57) [T " e (e, Q)

(0” QuD)
m (") [T po (0710170, QU pu (il 077, Q)
my (y") ﬁ 1(07 € A)

m(y") 3 R(@E B (371)>'

We (*) =

An identical derivation, using the additional fact that 1(9%571) €A =
(since the previous draw was an accepted one, it must be the case that it
satisfies the inequality restriction), gives

T
mU
wy (s — 1) H (@(S 5

t=1 R t—1 7Q(8_1)>




and, thus,
, 108 e A)
R a(i) ’Q(s—l)
Qg = min #, 1. (8)

=1 R0 )

Now consider drawing () in the Metropolis-Hastings algorithm after draw-
ing 07 (i.e. conditional on 7). Derivations are almost the same as for 7. A

Metropolis-Hastings algorithm takes candidate draws from py (Q|yT, HT(S))
and these are accepted with probability

T

) N 1]
t=1 R(ez(ti)la Q(*))
(s)

where the derivations are as above, but we are using the fact that 1(6;” €
A) =1 for all t.

m T
Note also that % is the Bayes factor comparing the restricted to
unrestricted model. For future reference, it is worth noting that it can be
calculated using MCMC output from the unrestricted posterior and the re-

lationship:
m (y") [ r 16 €A }
BF=——2.=F|Il,_,———~|, 10
o)~ " RG,Q) 1o
where the expectation is taken with respect to the unrestricted posterior.
That is, we can derive:

(9)

(g = min

r 10 € A)
s [Hf‘lth_l, @J
T et A T T T
/EﬂﬁpU (0", Qly") do" dQ
10 e 4y (T o001, Qpulon @) bp (@)
/ M 0,0 mo () v dQ
= m/niléiz—fa{npﬂet‘@1,Q)p(yt|9t,Q)}p(Q) derQ
_ m{)
my (y*)



Thus, MCMC output from the unrestricted posterior can be used to cal-
culate this Bayes factor. It should be emphasized that this requires a separate
run of the MCMC algorithm beyond that required to carry out posterior in-
ference in the model. That is, the Metropolis-Hastings algorithm described
above provides a chain of draws from the restricted posterior, not the unre-
stricted posterior. To calculate the Bayes factor we need a chain of draws
from the unrestricted posterior. To be precise, our Metropolis-Hasting al-
gorithm takes candidate draws from p (6" |y?, Q©~Y) where the Q¢ is a
draw from the restricted posterior. But to calculate the Bayes factor requires
draws from p (6" |y”, Q*~V) where the Q) is a draw from the unrestricted
posterior.

To aid in interpretation of the Bayes factor, note that if all the draws from
the unrestricted posterior satisfy the restrictions then the Bayes factor will
favor the restricted model (since R(6;-1, Q) < 1). However, if very few of the
draws satisfy the restrictions then the unrestricted model is favored unless
HL R(0;_1,Q) is very low for the draws which satisfy the restrictions. This
can be seen in another way by noting that (10) can also be written as

BF = Pr[Restrictions are true] |Restrictions are true

(11)
where Pr[Restrictions are true| is the proportion of MCMC draws from the
unrestricted posterior which satisfy the restrictions. Note first that a naive
researcher might be tempted to use Pr [Restrictions are true] alone as a mea-
sure of support for the restrictions, but (11) makes clear that this is not
enough. In practice, especially if Pr[Restrictions are true| is low the role of
the expected value term in (11) can be quite substantial. Since [[,_; R(0;_1, Q) <
1 (and often much less than one), the effect of ignoring this term would be
to under-report the support for the restrictions.

Thus, the unrestricted posterior can be used as a candidate generat-
ing density in a Metropolis-Hastings algorithm with acceptance probabilities
given by (8) and (9). The efficiency of this approach will depend on the prob-
ability that the restrictions are true under the unrestricted posterior. Such a
strategy is very similar to what is done in Cogley and Sargent (2005). How-
ever, they use an approximation, with ayp = 1 and an acceptance probability

B T
[Ti=1 B(6:-1,Q)

10



for the states of:

ap =[] 1(6: € A). (12)

In words, they use standard state space methods to draw a vector #” from the
unrestricted posterior and then attach an acceptance probability of zero if
any drawn 6, violates the restrictions, otherwise they accept the draw. Their
justification is implicitly based on the assumption that R(0;_1,Q) ~ ¢ (for
some constant c¢) for all values of §,_; € A and Q). This is likely to be the case
if most of the draws satisfy the restrictions and R(6;_1,Q) ~ 1. However,
if few draws do, then it is possible that the approximation of Cogley and
Sargent is quite poor. This is an issue we investigate empirically below.

A problem with these multi-move algorithms is that they both depend on
the term [[,_, 1(f; € A). This will be equal to zero even if only a single 6,
violates the restriction. Thus, it is possible (and often happens in practice)
that Metropolis-Hastings acceptance probabilities will be zero for virtually
every draw. This motivates consideration of a single-move sampler which, al-
though it may be slow to mix, will yield more reasonable Metropolis-Hastings
acceptance probabilities.

2.1.1 Evaluating the Probability of the Restriction Set

The approximation used by Cogley and Sargent is a useful one in that
R(0;-1,Q) does not have to be evaluated. But our multi-move Metropolis-
Hastings algorithm requires a method to evaluate R(6;_1, Q) In a few cases
it will be possible to analytically evaluate this. Consider, for instance, the
case where a scalar 0, is restricted to lie in the interval [a, b]. In this case,

b— 0, a — 9t71)
V@ V@

and ® is the cumulative distribution of the standard Normal.

But, in general, the evaluation of R(6;_1, Q) will require simulation meth-
ods. To some extent, the degree of computational difficulty depends on
whether A consists of linear restrictions or whether it includes some nonlin-
ear restrictions. For linear restrictions, methods such as the GHK simulator
will allow for fairly quick calculation of R(0; 1, Q) (see, e.g., Geweke, 1991).
However, for nonlinear restrictions, there is no general alternative but to

R(0:-1,Q) = ®( ) — &

11



generate draws from the appropriate unrestricted multivariate Normal dis-
tribution and count the proportion of times the restriction is satisfied. This
is very simple to implement, but can be slow since it must be done for every
one of the T states (both when calculating o and ). Nevertheless, for our
TVP-VAR applications, we do not find such a strategy places an insuperable
computational burden. As a rough order of magnitude calculation, if we (at
each MCMC replication for each of ¢t = 1,...,T draws of 6,) simulate 500
draws to approximate R(6;_1, @) it multiplies the time taken by our MCMC
algorithm about tenfold.

However, the use of simulation methods to calculate Metropolis-Hastings
acceptance probabilities raises a minor issue which arises since this proba-
bility is bounded at one. Let j = 1,..,J index the simulated values used to
approximate each of the R(0;_1, Q) which appear in

104 e A)
R(eii)le(s_l)>
1
t=1 R(egif),@(s—l))
If J is large, we can use asymptotic results to argue that the following result
holds approximately:

T

Qg =

ag ~ N (%ﬁe) ,

where

I (i
59 . Zj:l Ozé])
B J

and

: 2
J ~ =
21 <aé]) - a9>
= 7 .
However, we are not directly interested in ay, but

ap = min [y, 1].

Thus, using min [39, 1} would lead to a biased estimate of «ay. If Dy is very

small (i.e. enough draws are taken to approximate R(6;_1, Q) to a high degree
of accuracy), then this bias will be empirically negligible. However, to be on

12



the safe side, we use the formula for the mean of the truncated Normal
distribution to obtain an estimate of ay. Adding the fact that probability is
truncated at zero, we use as our estimate of the acceptance probability:

= tla) e ()
@y = A+ V/Tp = =\
v () - (%)
where ¢ () is the p.d.f. of the standard Normal distribution. Similar consid-

erations hold for the acceptance probability in the algorithm for drawing @)
and a similar transformation is done.

2.2 A single move algorithm

We maintain the same setup, notation and assumptions as before. Our
method for drawing () is exactly the same as the multi-move algorithm and,
hence, in this section we focus only on the conditional posterior p (9T|yT, Q).
The multi-move algorithms discussed previously draw from this directly (or
approximately in the case of the Cogley-Sargent algorithm). Our single move
algorithm involves drawing sequentially from p (0t|, yl,0_,, Q). The proposal
density for our Metropolis-Hastings algorithm is the unrestricted conditional
posterior py (9t|,yT, 0_,, Q). By the first order Markov assumption in the
state equation, this simplifies to:

pbu (9t|yT7 O1-1,0:41, Q) (13)
1 ’ e
& H exp {—5 (Oryi — 0:) Q ! (Orgi — Qt)]

i=—1,1
1
X exXp [—5 (?/t - Ztet)/ Ht_l (Z/t - Ztet):|

fort=1,...T — 1.
This is a Normal density with mean vector:

0, 1+6 0, 1+ 6
1y = t 1—|2" t+1+Gt{yt_Zt< ¢ 1;— t+1)17

where
1 -
Gr = 5QZ (2:QZ{ + Hy) ™

13



and covariance matrix:
1

O = 5 (Im - GtZt) Q.

For the final state, the unrestricted posterior that we draw from is pys (8T|«9T_1, Q, yT)
which is also a Normal density, but has mean given by

pip = Op_1 + Gr [yr — ZrOr_1],

where

Gr=QZ: (ZrQZh + Hy) ™

and covariance matrix:

Qr =, —GrZr)Q,

We wish to draw from the following restricted conditional posterior p (9,5 lyT, 01,01, Q) .
The derivation basically involves the same steps as for the unrestricted poste-
rior. However, a slight complication arises due to the way the decomposition
works and the fact that the integrating constant for the conditional prior
for 0,1 depends on 6,;. To see this clearly, remember our previous notation
where R (0;_1,Q) is the integrating constant from (7). For ¢t = 1,..,7 — 1,
our restricted conditional posterior has the form:

10, € A
P (0t|yT7€t—179t+17Q) 0.8 WPU (9t|€t—179t+17Q7yT> . (14)

The remaining integrating constant in (14) will cancel out in the acceptance
probability and can be ignored.

In a similar fashion as with our multi-move algorithm, we can use the
relationship between the unrestricted posterior in (13) and the restricted
posterior in (14) in order to obtain an acceptance probability for a candidate
draw of §; which we will label 9§*). Thus, we have

104 e A)
R 9(*),Q(S_1)
Qg = min #,1 (15)

10 € AR (egs—D, Q<s—1>)
R (eﬁ*), Q(s—l))

= min , 1

14



For t =T, this simplifies to

QT = 1((9510 € A)

We have now described our two sets of algorithms. Each has its advan-
tages and disadvantages. In general, multi-move algorithms will mix faster,
but if they end up rejecting virtually every draw then they may not mix at
all. Single move algorithms, in general, will mix more slowly, but are less
likely to get stuck in this manner. Of course, in practice, there is no need to
choose one approach or the other and an algorithm which combines the two
could be used (e.g. a multi-move algorithm could be used provided it did not
get stuck, if so the algorithm could switch to the single move method).

3 Application to a TVP-VAR

In order to investigate the properties of our algorithms, we use the model
of Primiceri (2005) which is similar to that used by Cogley and Sargent
(2005) and others. It is a TVP-VAR as specified in (1) and (2) with the
additional assumption that the measurement error covariance matrix, Hy,
exhibits multivariate stochastic volatility of a particular sort (see the ap-
pendix for details). We use data from 1953Q1 through 2006Q2 on three
commonly-used variables: the unemployment rate (seasonally adjusted civil-
ian unemployment rate, all workers over age 16), interest rate (yield on three
month Treasury bill rate) and inflation rate (the annual percentage change
in a chain-weighted GDP price index).?

Primiceri (2005) uses a training sample prior involving the first ten years
of data. To be precise, he uses the training sample and a time-invariant VAR
to produce OLS estimates of the VAR coefficients, 6, and the associated
covariance matrix, V. For @, the prior given in (?7) is used with v, = 40
and () = 0.0001V. This is the prior we call the “Primiceri Prior” in our
empirical results. We also present results for what we call the “Alternative
Prior” which has v, =4 and @ = 0.01V. This alternative prior is one which
could reasonably be entertained by a researcher, but is less informative and
centers the prior over a region of the parameter space which allows for slightly

°The data were obtained from the Federal Reserve Bank of St. Louis website,
http://research.stlouisfed.org/fred2/. Note that Primiceri (2005) used data through
2001Q3. Hence, our data is not identical to his.
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more time-variation in the VAR coefficients. The prior for the remaining
parameters is discussed in the appendix.

Note that we are deliberately using a much more complicated model than
is necessary. Our model uses the algorithms developed above as a set of
blocks in a bigger MCMC algorithm (e.g. involving sets of blocks for the
multivariate stochastic volatility, etc.). We do this deliberately in order to
investigate the performance of these algorithms in as realistic a context as
possible. Of course, by adding more blocks our algorithms will mix more
slowly (and finding out just how slow is an issue we wish to investigate).
But, since the additional blocks relating to multivariate stochastic volatility,
etc. will be identical in all our algorithms, the relative comparison of multi-
move and single move algorithms will be little affected by their inclusion.

We use the inequality restriction that the roots of the matrix polynomial
defined by the VAR coefficients in 6, lie outside the unit circle. We begin with
a very brief summary of the performance of the multi-move algorithms using
the training sample prior of Primiceri (2005), making his choice of two lags
in the VAR. Simply put, they do not work in a reasonable amount of time.
More precisely, when we run the sampler for a large number of replications,
only a handful of draws are accepted. For instance, in a long run of post-burn
in replications, 99.97% of the candidate draws had at least one state which
violated the restriction and, hence, fewer than 0.03% of candidate draws were
accepted in the Metropolis-Hastings algorithm. This shows how, in serious
macroeconomic applications, it is very easy for the VAR coefficients to evolve
in ways that allow for some posterior probability to lie in explosive regions.
Insofar as one believes such explosive behavior is unrealistic, it is desirable to
rule it out in the prior. This further motivates why the issues discussed in this
paper are important ones. In a case like this, where multi-move algorithms
reject virtually every draw, the researcher would have no choice but to use
our single move algorithm.

In the remainder of this paper we use one lag in our VAR. This more
parsimonious choice yields more precise inference and less evidence of ex-
plosive behavior in the VAR coefficients. We begin with a discussion of the
computational performance of the various algorithms. The key issue with
these algorithms is the speed of mixing. To evaluate this issue, we present
the commonly-used effective sample size (see, among many others, Holmes
and Held, 2006), defined as:
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B S
1+23 5, p(h)

where S is the number of (post burn-in) MCMC replications, p (h) is the
autocorrelation between MCMC draws h replications apart. FESS can be
calculated for any feature of interest. Given that the key issues in this paper
relate to the time varying VAR coefficients we base our features of interest on
these. To keep things manageable we use Zthl 6, as our feature of interest
and present £SS for one element of this vector. In Table 1 we choose the
coefficient on the lagged interest rate in the interest rate equation (but re-
sults for other coefficients are similar). Note that, if the MCMC draws were
independent of one another, we would get ZhH:1 p(h) =~ 0 and ESS = S.
With positively correlated MCMC draws we get £SS < S and the degree
to which ESS is less than S is a measure of how slowly mixing the algo-
rithm is. Table 1 is produced with S = 50,000 (following 10,000 burn-in
draws) using H = 100. We use our single and multi-move algorithms as well
as the variants of both algorithms with R(6;_1,Q) ~ ¢ (which we call the
“Cogley-Sargent Approximation”). Table 1 also presents the proportion of
candidate draws that are accepted (in the column labelled “Prop. Switch”)
in the algorithm for drawing the states.

The top third of Table 1 presents some evidence on standard algorithms
without imposing inequality restrictions on states. Note that these algo-
rithms simply use the unrestricted posteriors. It can be seen that, even
without the complications caused by the imposition of inequality restric-
tions, these algorithms can be very slow to mix. As we would expect, the
multi-move algorithm has an effective sample size which is almost twice as
high as the single move algorithm. But it still mixes very slowly. A rough
rule of thumb would say that, to achieve the same degree of accuracy as
S = 10,000 independent draws, the multi-move algorithm would require
S = é%ggg > 300,000 draws. This finding serves as a warning to researchers
using Bayesian methods for TVP-VARs with multivariate stochastic volatil-
ity. Care should be taken in monitoring convergence of MCMC algorithms.

Once we impose restrictions on the states, it is likely that the mixing of
the MCMC algorithms will get worse due to the Metropolis-Hastings algo-
rithm not accepting all candidate draws. Although there is a contradictory
tendency in that allowing for explosive VAR coefficients can slow mixing so
that, by ruling these out mixing can improve. The questions we want to
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address are: “how much worse/better do the algorithms become when re-
strictions are imposed?” and “by how much does the performance of single
move algorithms improve relative to multi-move variants when we impose
restrictions on the states?”. An examination of Table 1 tells a strong and
consistent story: With the multi-move algorithm, imposing inequality restric-
tions causes a large decrease in efficiency. However, for the single-move algo-
rithms, adding inequality restrictions does not cause the (admittedly initially
poor) mixing performance of the unrestricted posterior to decline.

With the Primiceri prior, the imposition of the inequality restrictions
leads to multi-move algorithms where about 10% of the Metropolis-Hastings
algorithm draws are accepted. This causes the effective sample size to fall
substantially. With the Alternative Prior, which allows for more variation
in the VAR coefficients, the multi-move algorithm accepts almost no post
burn-in candidate draws. Hence, virtually all the draws of 6, are exactly
the same as one another and, thus, are almost perfectly correlated with one
another. Thus, to all intents and purposes, the multi-move algorithm is
computationally infeasible with the Alternative Prior.

The single move algorithm, in contrast, always works roughly the same
in all cases. For this algorithm there are 7" Metropolis-Hastings candidate
generating densities and, hence, “Prop. Switch” is the average of these. It
can be seen that the single-move algorithm does continue to accept candi-
date draws and, thus, its performance does not deteriorate when inequality
restrictions are imposed.

Another point worth noting is that (for a given number of replications) our
Metropolis-Hastings algorithms work slightly better than the Cogley-Sargent
approximations. This is partly due to our way of drawing (). That is, the
Cogley-Sargent approximation and our algorithm both take candidate draws
of @) from the unrestricted posterior. However, the Cogley-Sargent approxi-
mation accepts every draw, where we only accept them with probability ag
given in (9). This helps keep the candidate draws of 67 in the non-explosive
region.

For completeness, we note that, when using Primiceri’s prior, the pro-
portion of accepted draws of @) is 0.4673 (for the single move algorithm)
and 0.4641 (for the multi-move algorithm). For the Alternative Prior these
numbers are 0.4953 and 0.6670, respectively.
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Table 1: Evidence on Mixing of Algorithms

Algorithm No Restrictions on the States

Primiceri Prior Alternative Prior

% Prop. Switch % Prop. Switch
Single move 0.0092 | 1.0000 0.0063 | 1.0000
Multi-move 0.0283 | 1.0000 0.0138 | 1.0000

Restrictions on States

Primiceri Prior Alternative Prior

% Prop. Switch % Prop. Switch
Single move 0.0168 | 0.7981 0.0143 | 0.8387
Multi-move 0.0098 | 0.1362 0.0058 | 0.0047

Primiceri Prior Alternative Prior

% Prop. Switch % Prop. Switch
Single move 0.0103 | 0.8351 0.0073 | 0.7877
Cogley-Sargent Approx.
Multi-move 0.0062 | 0.1092 0.0050 | 0.0007
Cogley-Sargent Approx.

As discussed in Section 2, our algorithms require the evaluation of key
integrating constants which we have labelled R(6;_1, @) for the multi-move
algorithms. For the present case, where we are using a complicated, nonlin-
ear inequality restriction, evaluation of these integrating constants requires
the use of simulation methods which can slow down the algorithm. As we
have seen, this has led other authors such as Cogley and Sargent (2005)
to ignore these integrating constants, implicitly assuming that R(6;_1, Q) is
approximately constant. If it is not approximately constant then the ap-
proximation inherent in their MCMC algorithm could be a poor one. In
addition, remember that Hthl R(0;-1,Q) appears in (10), the formula for
Bayes factor comparing the restricted to the unrestricted model. Thus, in-
appropriate treatment of Hthl R(0;_1,Q) can potentially lead to misleading
inference about how probable the restrictions are.

Of course, the question of whether the R(0;_1, Q) ~ ¢ approximation is
a good one is application-specific. Nevertheless, we feel our TVP-VAR is
representative of the sorts of applications used in practice and should shed
some light on whether the algorithms proposed in this paper are necessary, as
opposed to the simpler approximate algorithm of Cogley and Sargent (2005).
Figure 1 plots a histogram of the acceptance probabilities, ay, which depend
on [T, R(6;_1,Q) evaluated at old and candidate draws. It is based on all
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the (post burn-in) MCMC draws which satisfy the inequality restrictions (the
remaining draws have acceptance probability of zero). It uses our multi-move
algorithm and the Primiceri prior.

Figure 1 shows how there is a large degree of variation in this accep-
tance probability across MCMC draws. The Cogley-Sargent approximate
algorithm would simply accept all these draws.® Clearly our algorithm has
acceptance probabilities which can be quite different from the alternative of
either rejecting or accepting every candidate draw depending only on whether
any 0; exhibits explosive behavior or not. These facts suggest that assuming
[T, R(6:_1,Q) to be constant across draws (as approximate methods do)
can be misleading.

So far, we have compared algorithms in terms of their mixing properties
and Metropolis-Hastings acceptance probabilities. Do the algorithms differ
enough to have substantial implications for empirical results? This depends
partly on how empirical results are presented. For instance, if there is a
small amount of posterior probability in the explosive region for 6;, poste-
rior means and standard deviations will be much more effected by this than
posterior medians and inter-quartile ranges. To give an example of the prac-
tical implications of the issues addressed in this paper, consider the Bayes
factor comparing the restricted model to the unrestricted model. This can
be calculated using the MCMC draws from the unrestricted posterior as de-
scribed in (11). Remember that this Bayes factor involves two terms, one
involving the integrating constant Hthl R(0;-1,Q) and the other involving
the proportion of draws which satisfy the restrictions (the latter we called
Pr [Restrictions are true]). In this data set, using the Primiceri prior, we
find Pr [Restrictions are true] = 0.0088.” Some might use this latter as very
strong evidence against the restrictions interpreting it (incorrectly) as saying
there is less than 1% probability that the restrictions hold. However, when
we correctly calculate the Bayes factor using (11), we find it to be 0.1977.
This still suggests that the restrictions are unlikely to be true, but to a far
lesser extent. That is, the unrestricted model is only five times as proba-

6This statement is only approximately correct since the Cogley-Sargent algorithm dif-
fers from ours in its treatment of Q).

"Remember that this number is calculated using the unrestricted posterior, not the
candidate generating density in our multi-move algorithms. Since the unrestricted pos-
terior draws () conditional on all draws of QT, whereas our multi-move algorithms draw
Q conditional on accepted draws of 7, this number is not the same as the proportion of
switches reported in Table 1.
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Figure 1: Histogram of MH Acceptance Probs. for @

ble as the restricted one. Alternatively, using the popular Kass and Raftery
(1995) rule of thumb for interpreting Bayes factors, the Bayes factor lies in
the region where the recommended conclusion is “slight evidence against the
restrictions”. Clearly, proper treatment of the integrating constant can be of
substantial empirical importance in real world applications.

4 Conclusions

In this paper, we have developed algorithms for imposing inequality restric-
tions on the states in state space models. Our methods are quite general, but
we have focussed on using them in TVP-VAR models. In particular, we con-
sider the important empirical issue of imposing the restriction that the roots
of the matrix polynomial defined by the VAR coefficients at each point in
time all lie outside the unit circle. There are two problems with conventional
algorithms for imposing such restrictions. Firstly, they are multi-move algo-
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rithms which involve simply discarding candidate draws of the entire state
vector when the VAR coeflicients at any point in time violate the inequality
constraint. In this paper, we have shown how it can easily arise in practice
that virtually all the candidate draws end up being discarded and, to all
intents and purposes, such conventional algorithms simply do not work given
finite computing power. To get around this problem, we derive a single move
algorithm which discards only the candidate draw at time t if the inequality
constraint is violated. Typically, researchers avoid single move algorithms for
state space models since they mix more slowly than multi-move algorithms.
However, in our empirical work, we find that the cost imposed by slower
mixing is relatively small. Furthermore, our single move algorithm works in
cases where the multi-move algorithm fails.

A second problem with conventional algorithms is that they are approx-
imate, ignoring a certain integrating constant. This integrating constant
can be awkward to calculate (since it often requires the use of simulation
methods). But nevertheless, our empirical investigations indicate that it is
important to include it since it can vary substantially across MCMC draws
and have a substantive impact of results.
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Appendix: Treatment of Measurement Error Covari-

ance Matrix and Additional Details about Priors

In the body of the paper, we left H; unspecified. This appendix provides
details about how this is treated in our empirical work. The approach is the
same as in Primiceri (2005) so we offer only the general outline and refer the
reader to Primiceri’s paper for exact formulae for the relevant blocks of the
MCMC algorithm. We begin with a triangular reduction of H; such that:

AthA; - EtE;
or
Hy = A7'S,% (A7)

where ¥; is a diagonal matrix with diagonal elements o, for j = 1,..,p and
Ay is the lower triangular matrix:

1 o ... . 0
21t 1
A = . .
1 0
Qp1t - ce Qp(p—1),t 1

For ¥, a stochastic volatility framework is used. In particular, if o, =
(017,5, ey O—p,t)/a hi,t = ln (07;715), ht = (th, ey hpﬂg)/ then we use:

hiv1 = hy 4y,

where u; is N (0, W) and is independent over ¢ and of €; and 7,. The algorithm
of Kim, Shephard and Chib (1998) can be used to draw these volatilities.

To describe the manner in which A; evolves, stack the unrestricted ele-
ments by rows into a p(p;) vector as a; = (agl,t, U314, A32, 15 - ap(p_l)ﬂt),. These
are allowed to evolve according to the state equation:

Aiy1 = Qg + Cta

where ¢, is N (0,C) and is independent over ¢ and of u;, €; and n,. . Fol-
lowing Primiceri (2005), we assume C' to have a block diagonal structure
such that the coefficients in C' belonging to each equation are independent
of one another. With regards to our MCMC algorithm, this means that we
can transform the original measurement equation so that the Durbin and
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Koopman (2002) algorithm can be used to draw the states one equation at
a time.

Posterior draws W and the blocks of C' involve the standard Wishart
forms. Full details are given in Primiceri (2005) or Koop, Leon-Gonzalez
and Strachan (2007). With respect to the priors for W and C' as well as
the initial conditions in the two state equations that appear in the volatility
specification, suffice it to note here that we use exactly the same training
sample prior as in Primiceri (2005) or Koop, Leon-Gonzalez and Strachan
(2007).

We treat 0y as a regression effect and, following Primiceri (2005), use a
prior of the form:

0o ~ N (@, 417) ,

where V is defined in the body of the paper.
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