Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The stability of obliquely-propagating solitary-wave solutions to Zakharov-Kuznetsov-type equations

Parkes, E.J. and Munro, S. (2005) The stability of obliquely-propagating solitary-wave solutions to Zakharov-Kuznetsov-type equations. Journal of Plasma Physics, 71 (5). pp. 695-708. ISSN 0022-3778

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In certain circumstances, small amplitude, weakly nonlinear ion-acoustic waves in a magnetized plasma are governed by a Zakharov-Kuznetsov equation or by a reduced form of the equation. Both equations have a plane solitary travelling-wave solution that propagates at an angle αto the magnetic field. The multiple-scale perturbation method developed by Allen and Rowlands is used to calculate the initial growth rate of a small, transverse, long-wavelength perturbation to these solitary-wave solutions. Previous results in the literature are corrected. A numerical determination of the growth rate is given. For k[mid R:] secα[mid R:][double less-than sign]1, where k is the wavenumber of the perturbation, there is excellent agreement between our analytical and numerical results.