
AAS 09-153

DISPLACED PERIODIC ORBITS WITH LOW-THRUST

PROPULSION IN THE EARTH-MOON SYSTEM

Jules Simo∗ and Colin R. McInnes†

Solar sailing and solar electric technology provide alternative forms of space-
craft propulsion. These propulsion systems can enable exciting new space-science
mission concepts such as solar system exploration and deep space observation.
The aim of this work is to investigate new families of highly non-Keplerian or-
bits, within the frame of the Earth-Moon circular restricted three-body problem
(CRTBP), where the third massless body utilizes a hybrid of solar sail and a solar
electric thruster. The augmented thrust acceleration is applied to ensure a con-
stant displacement periodic orbit above L2, leading to simpler tracking from the
lunar surface for communication applications. Using an approximate, first order
analytical solution to the nonlinear non-autonomous ordinary differential equa-
tions, periodic orbits can be derived that are displaced above/below the plane of
the CRTBP.

INTRODUCTION

The use of solar electric propulsion (SEP) technology is now a realistic option for designing

trajectories for interplanetary missions, while solar sail technology is currently under development.

The topics covered in this paper are the results of displaced periodic orbits in the Earth-Moon system

in which the third body uses a hybrid solar sail. The hybrid sail model is composed of two low thrust

propulsion systems, namely a solar sail and solar electric propulsion.

A solar sail is propelled by reflecting solar photons; transforming the momentum of the photons

into a propulsive force. Solar sail technology appears as a promising form of advanced spacecraft

propulsion which can enable exciting new space-science mission concepts such as solar system ex-

ploration and deep space observation. This form of propulsion can provide energy changes greater

than are possible with either ion or chemical propellants. Solar sails can also be utilised to main-

tain highly non-Keplerian orbits, such as closed orbits displaced high above the ecliptic plane (see

McInnes,1 Waters and McInnes,2 Simo and McInnes3). Solar sails are especially suited for such

non-Keplerian orbits, since they can apply a propulsive force continuously over indefinitely long

periods. In such trajectories, a sail can be used as a communication satellite for high latitudes. For

example, the orbital plane of the sail can be displaced above the orbital plane of the Earth, so that the

sail can stay fixed above the Earth at some distance, if the orbital periods are equal. McInnes4 inves-

tigated a new family of displaced solar sail orbits near the Earth-Moon libration points. Displaced

orbits have more recently been developed by Ozimek et al.5 using collocation methods. In Baoyin

and McInnes6, 7, 8 and McInnes4, 9, the authors describe new orbits which are associated with artifi-

cial lagrange points in the Earth-Sun system. These artificial equilibria have potential applications

for future space physics and Earth observation missions. In McInnes and Simmons10, the authors
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investigate large new families of solar sail orbits, such as Sun-centered halo-type trajectories, with

the sail executing a circular orbit of a chosen period above the ecliptic plane.

The idea of combining a solar sail with an auxiliary SEP system to obtain a hybrid sail system is

important due to the challenges of performing complex missions (see Leipold and Götz,11 Mengali

and Quarta,12 Baig and McInnes13). The solar electric propulsion system possess high specific

impulse (Isp ≈ 3000 sec). SEP consumes propellant and decreases the mass of the spacecraft,

whereas the solar sail do not consume any propellant. Hence, one of the most important tasks

during this analysis should be the control of the thrust as the propellant is consumed to obtain a

constant acceleration. This form of propulsion is useful for some high energy missions, but unlike

solar sails, they have a finite ∆V capability, which makes them unsuitable for missions where a

non-Keplerian orbit has to be maintained over indefinite periods of time.

Orbits around the collinear libration points of the Earth-Moon system are of great interest be-

cause their unique positions are advantageous for several important applications in space mission

design (see e.g. Szebehely14, Farquhar,15 Roy,16 Vonbun,17 Thurman et al.,18 Gómez et al.,19, 20

Breakwell and Brown21, Richardson22, Howell23, 24). Such orbits cannot be maintained without ac-

tive control due to their instability (see Breakwell and Brown21, Richardson22, Howell23, 24). If the

orbit maintains visibility from Earth, a spacecraft on it (near the L2 point) can be used to provide

communications between the equatorial regions of the Earth and the lunar poles. Moreover, if an-

other communications satellite is located at the L1 point, there could be continuous communications

coverage between the equatorial region of the Earth and the lunar surface (see Farquhar25, Farquhar

and Kamel26).

This paper investigates displaced periodic orbits at linear order in the circular restricted Earth-

Moon system, where the third massless body utilizes a hybrid of solar sail and a solar electric

propulsion. In particular, periodic motions in the vicinity of the Lagrange points in the Earth-Moon

system will be explored along with their applications. Firstly we describe the dynamic model of

the hybrid sail. The first-order approximation is derived for the linearized equations of motion.

Then, a feedback linearization control scheme (see Slotine and Li27) is proposed and implemented.

The main idea of this approach is to cancel the nonlinearities in a nonlinear system and to impose

a desired linear dynamics. This provides the key advantage that the displacement distance of the

hybrid sail is then constant. The displaced orbits found by Ozimek et al.5 show large excursions

in displacement distance. In practice, a constant displacement distance may lead to easier tracking

from the lunar surface for communications applications. Unfortunately, the internal dynamics of

the linear system are not always stable. Therefore, a stabilizing approach is used to increase the

damping in the system and thereby to allow a higher gain in the controller. Finally, we evaluate the

performance of the Hybrid Sail.

SYSTEM MODEL

In this work, we will assume that m1 represents the larger primary (Earth), m2 the smaller primary

(Moon) and we will be concerned with the motion of a hybrid sail that has negligible mass. It is

always assumed that the two more massive bodies (primaries) are moving in circular orbits about

their common center of mass and the mass of the third body is too small to affect the motion of

the two more massive bodies. The problem of the motion of the third body is the circular restricted

three-body problem (CRTBP).

In order to develop any mathematical model without loss of the generality, it is useful to introduce
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Figure 1 (a) Schematic geometry of the Hybrid Sail in the Earth-Moon restricted
three-body problem; (b) Angle γ between the Hybrid Sail surface normal n and the
Sun-line direction S.

some parameters that are characteristics of each particular three-body system. This set of parameters

is used to normalize the equations of motion. The unit mass is taken to be the total mass of the

system (m1 + m2) and the unit of length is chosen to be the constant separation between m1 and

m2. Under these considerations the masses of the primaries in the normalized system of units are

m1 = 1 − µ and m2 = µ, with µ = m2/(m1 + m2) (see Figure 1 (a)).

Equations of Motions

The nondimensional equation of a motion of a hybrid sail in the rotating frame of reference is

described by

d2r

dt2
+ 2ω ×

dr

dt
+ ∇U(r) = aS + aSEP , (1)

where ω = ωẑ (̂z is a unit vector pointing in the direction z) is the angular velocity vector of the

rotating frame and r is the position vector of the hybrid sail relative to the center of mass of the two

primaries. We will not consider the small annual changes in the inclination of the Sun line with

respect to the plane of the system. The three-body gravitational potential U(r), the solar radiation

pressure acceleration aS and the nondimensional acceleration due to the SEP thruster aSEP are

defined by

U(r) = −

[

1

2
|ω × r|2 +

1 − µ

r1
+

µ

r2

]

,

aS = a0(S · n)2n, (2)

aSEP = aSEP m, (3)

where µ = 0.1215 is the mass ratio for the Earth-Moon system. The hybrid sail position vectors

w.r.t. m1 and m2 respectively (see Figure 1 (a)), are defined as r1 = [x + µ, y, z ]T and r2 =
[x − (1 − µ), y, z]T , a0 is the magnitude of the solar radition pressure acceleration exerted on the
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hybrid sail and the unit vector n denotes the thrust direction, aSEP is the acceleration from the SEP

system and the unit vector m denotes the thrust direction. The sail is oriented such that it is always

directed along the Sun-line S, pitched at an angle γ to provide a constant out-of-plane force. The

unit normal to the hybrid sail surface n and the Sun-line direction are given by

n =
[

cos(γ) cos(ω⋆t) − cos(γ) sin(ω⋆t) sin(γ)
]T

,

S =
[

cos(ω⋆t) − sin(ω⋆t) 0
]T

,

where ω⋆ = 0.923 is the angular rate of the Sun-line in the corotating frame in a dimensionless

synodic coordinate system.

Linearized System

We now want to investigate the dynamics of the hybrid sail in the neighborhood of the libra-

tion points. We denote the coordinates of the equilibrium point as rL = (xLi
, yLi

, zLi
) with

i = 1, · · · , 5. Let a small displacement in rL be δr such that r → rL + δr. The equations for

the hybrid sail can then be written as

d2δr

dt2
+ 2ω ×

dδr

dt
+ ∇U(rL + δr) = aS(rL + δr) + aSEP (rL + δr), (4)

and retaining only the first-order term in δr = [δx, δy, δy]T in a Taylor-series expansion, the gradi-

ent of the potential and the acceleration can be expressed as

∇U(rL + δr) = ∇U(rL) +
∂∇U(r)

∂r

∣

∣

∣

∣

r=rL

δr + O(δr
2), (5)

aS(rL + δr) = aS(rL) +
∂aS(r)

∂r

∣

∣

∣

∣

r=rL

δr + O(δr
2). (6)

aSEP (rL + δr) = aSEP (rL) +
∂aSEP (r)

∂r

∣

∣

∣

∣

r=rL

δr + O(δr
2). (7)

It is assumed that ∇U(rL) = 0, and the accelerations aS and aSEP are constant with respect to

the small displacement δr, so that

∂aS(r)

∂r

∣

∣

∣

∣

r=rL

= 0, (8)

∂aSEP (r)

∂r

∣

∣

∣

∣

r=rL

= 0. (9)

The linear variational system associated with the libration points at rL can be determined through

a Taylor series expansion by substituting Eqs. (5) and (6) into (4) so that

d2δr

dt2
+ 2ω ×

dδr

dt
+ Kδr = 0, (10)

where the time-dependant matrix K is defined as

K =

[

∂∇U(r)

∂r

∣

∣

∣

∣

r=rL

− aS(rL) − aSEP (rL)

]

. (11)
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Using matrix notation the linearized equation about the libration point (Equation (10)) can be rep-

resented by the homogeneous linear system Ẋ = A(t)X, where the state vector X = (δr, δṙ)T , and

for which the coefficients of the matrix A(t) = A(t + T ) are periodic functions of time with period

T = 2π/ω⋆.

The Jacobian matrix A(t) has the general form

A(t) =

(

03 I3

K Ω

)

, (12)

where I3 is a identity matrix, and

Ω =





0 2 0
−2 0 0

0 0 0



 . (13)

Again, the sail attitude is fixed such that the sail normal vector n, which is the unit vector that is

perpendicular to the sail surface, points always along the direction of the Sun line with the following

constraint S · n ≥ 0. Its direction is described by the pitch angle γ relative to the Sun-line, which

represents the sail attitude. By making the transformation r → rL + δr and retaining only the first-

order term in δr = (ξ, η, ζ)T in a Taylor-series expansion where (ξ, η, ζ) are axes attached to the

libration point as shown in Figure 1 (a), the linearized nondimensional equations of motion relative

to the collinear libration points can be written as

ξ̈ − 2η̇ − Uo
xxξ = aξ + aSEPξ

, (14)

η̈ + 2ξ̇ − Uo
yyη = aη + aSEPη , (15)

ζ̈ − Uo
zzζ = aζ + aSEPζ

, (16)

where Uo
xx, Uo

yy, and Uo
zz are the partial derivatives of the gravitational potential evaluated at the

collinear libration points, and the solar sail acceleration is defined in terms of three auxiliary vari-

ables aξ, aη, and aζ .

The solar sail acceleration components are given by

aξ = a0 cos(ω⋆t) cos3(γ), (17)

aη = −a0 sin(ω⋆t) cos3(γ), (18)

aζ = a0 cos2(γ) sin(γ), (19)

where a0 is the characteristic acceleration. The SEP acceleration components aSEP are used for

feedback control as described later.

FEEDBACK LINEARIZING APPROACH TO THE TRACKING IN NONLINEAR SYS-

TEMS

Objectives

Linearization by feedback is a well-known approach to control nonlinear systems. This method

transforms a nonlinear state space model into a new coordinate system where the nonlinearities can
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Figure 2. Block Diagram of Feedback Linearization.

be cancelled by feedback. It is a way of transforming system models into equivalent models of

simpler form. For example, a change of variables Z = Φ(X) is used to transform the state equa-

tion from the X-coordinates to the Z-coordinates, where the map Φ(.) must be invertible, such that

X = Φ−1(Z) for Z ∈ Φ(D) where D is the domain of Φ. Furthermore, the derivatives of X

and Z should be continous and therefore the map Φ and its inverse Φ−1(.) are continously differ-

entiable. Such a map is a diffeomorphism and can be viewed as a generalization of the coordinate

transformation. In order to understand this approach, a formal definition is necessary.

Definition 1 A nonlinear system

Ẍ = f(X, Ẋ) + u (20)

where f : D → R
n is sufficiently smooth on a domain D ⊂ R

n is said to be feedback linearizable

(or input-state linearizable) if there exits a diffeomorphism Φ : D → R
n, and a nonlinear feedback

control law u = (X,ν) such that the new state variables

Z = Φ(X) (21)

and the new control input ν satisfy a linear time-invariant relation

Ż = AZ + Bν (22)

where the pair (A, B) is completely controllable.

Given the nonlinear system of equation (20), the problem of feedback linearization consists of

finding, if possible, a change of coordinates of the form of equation (21) and a static state feed-

back control u = (X,ν), such that (A, B) is controllable. This technique is completely different

from a jacobian linearization, on which linear control is based. The block diagram of the feedback

linearization is depicted in Figure 2. From equation (1) the motion of the hybrid solar sail in the

CRTBP is described by the scalar equations in the form

ξ̈ = 2η̇ + (xL2
+ ξ) − (1 − µ)

(xL2
+ ξ) + µ

r3
1

− µ
(xL2

+ ξ) − 1 + µ

r3
2

+ aξ + uξ, (23)

η̈ = −2ξ̇ + η −

(

1 − µ

r3
1

+
µ

r3
2

)

η + aη + uη, (24)

ζ̈ = −

(

1 − µ

r3
1

+
µ

r3
2

)

ζ + aζ + uζ , (25)
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where the vector

u(t) =
[

uξ uη uζ

]T
(26)

is the applied control acceleration due to the SEP thruster.

To develop a feedback linearization scheme, the motion of the hybrid solar sail moving in the

CRTBP is separated into linear and nonlinear components, such that

ξ̈ = f ξ
Non−Linear + f ξ

Linear + aξ + uξ, (27)

η̈ = fη
Non−Linear + fη

Linear + aη + uη, (28)

ζ̈ = f ζ
Non−Linear + f ζ

Linear + aζ + uζ , (29)

where the f functions are defined as the linear and the nonlinear terms in the equations (23), (24)

and (25)

f ξ
Non−Linear = −(1 − µ)

(xL2
+ ξ) + µ

r3
1

− µ
(xL2

+ ξ) − 1 + µ

r3
2

, (30)

f ξ
Linear = 2η̇ + (xL2

+ ξ), (31)

fη
Non−Linear = −

(

1 − µ

r3
1

+
µ

r3
2

)

η, (32)

fη
Linear = −2η̇ + (xL2

+ ξ), (33)

f ζ
Non−Linear = −

(

1 − µ

r3
1

+
µ

r3
2

)

ζ, (34)

f ζ
Linear = 0, (35)

with r1 =
√

((xL2
+ ξ) + µ)2 + η2 + ζ2 and r2 =

√

((xL2
+ ξ) − 1 + µ)2 + η2 + ζ2.

The solar sail acceleration components are given in equations (17), (18) and (19). We then select

the SEP control u(t) such that

u(t) =





uξ

uη

uζ



 = −



















(xL2
+ ξ) − (1 − µ)

(xL2
+ξ)+µ

r3

1

− µ
(xL2

+ξ)−1+µ

r3

2

− Uo
xxξ

−

(

1−µ
r3

1

+ µ
r3

2

)

η − Uo
yyη

−

(

1−µ
r3

1

+ µ
r3

2

)

ζ − Uo
zzζ



















(36)

+ũ(t). (37)

The equations (23), (24) and (25) then become

ξ̈ = 2η̇ + Uo
xxξ + a0 cos(ω⋆t) cos3(γ) + ũξ, (38)

η̈ = −2ξ̇ + Uo
yyη − a0 sin(ω⋆t) cos3(γ) + ũη, (39)

ζ̈ = Uo
zzζ + a0 cos2(γ) sin(γ) + ũζ . (40)
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By removing the nonlinear dynamics from the system, the control acceleration vector ũ(t) is

determined such that the desired response characteristics of the linear time-invariant dynamics are

produced. In particular, it can be ensured that the displacement distance of the periodic orbit is

constant, which provides key advantages for lunar polar telecommunications.

Linearization about a Reference Solution

In this study, the reference trajectory is obtained from the linear analytical solution. Let Xref (t)
represent some reference motion that satisfies the system equations (14), (15) and (16), then uref (t)
denotes the control effort required to maintain Xref (t).

The linearization about this reference solution yields a subsystem of the form

Ẋ(t)Linear = ÃX(t)Linear + Bũ(t), (41)

where the matrix B is defined by

B =
(

03 I3

)T
, (42)

and Ã is determined from the linear dynamics of the solar sail motion such that

Ã =

(

03 I3

K Ω

)

, (43)

with Ω defined in equation (13). Hence, using feedback to convert a nonlinear state equation into a

controllable linear state equation by cancelling the nonlinearities requires the nonlinear state equa-

tion to have the form of equation (41).

STABILIZATION AND TRACKING OF FEEDBACK LINEARIZABLE SYSTEMS

After transforming nonlinear dynamics into a linear form, one can easily design controllers for

either stabilization or tracking purposes.

Stabilization

Let us consider nonlinear system described by

Ẍ = f(X, Ẋ) + u, (44)

where X ∈ R
3 is the state. Let e(t) = X(t) − Xref (t) denote the state error relative to some

reference solution, where the reference trajectory

Xref (t) =
[

Xref Yref Zref

]T
(45)

is given by the analytical solution

Xref (t) = xLi + ξ(t), (46)

Yref (t) = η(t), (47)

Zref (t) = ζ(t), (48)

8



1 2 3 4 5 6
t

0.001

0.002

0.003

0.004

0.005

u

Figure 3. Magnitude of the total control effort.

(i = 1, 2, 3) with

ξ(t) = ξ0 cos(ω⋆t), (49)

η(t) = η0 sin(ω⋆t), (50)

ζ(t) = ζ0, (51)

which is a solution of the linear equations (14 - 16) with aSEP = 0 (pure sail at linear order). aSEP

need to cancel the higher order terms in the expansion.

Then differentiate e(t) until the control appears so that

e(t) = X(t) − Xref (t), (52)

ė(t) = Ẋ(t) − Ẋref (t), (53)

ë(t) = Ẍ(t) − Ẍref (t), (54)

= f(X, Ẋ) + u − Ẍref (t), (55)

= −λ1ė − λ2e, (56)

and so, we have

u(t) = −f(X, Ẋ) + Ẍref (t) − λ1ė − λ2e, (57)

where −λ1ė − λ2e is the stabilizing term.

Trajectory Tracking

Consider the system given by (44), where our objective is to make the output X ∈ R
3 track

a desired trajectory given by the reference trajectory Xref ∈ R
3 while keeping the whole state

bounded. Therefore, we want to find a control law for the input u ∈ R such that, starting from any

initial state in a domain D ⊂ R
3, the tracking error e(t) = X(t)−Xref (t) goes to zero, while the

whole state X ∈ R
3 remains bounded.

Hence, asymtotic tracking will be achieved if we design a state feedback control law to ensure

that e(t) is bounded and converges to zero as t tends to infinity.

Thus, the control law

9



u(t) = −f(X, Ẋ) + Ẍref (t) − λ1ė − λ2e (58)

yields the tracking error equation

ë + λ1ė + λ2e = 0, (59)

where λ1 and λ2 are chosen positive constants.

EVALUATION OF HYBRID SAIL PERFORMANCE

In this section we investigate the performance of a hybrid sail system, constituted by a solar sail

combined with solar electric propulsion. The simulation was performed around the L2 point for a

period of one month. The magnitude of the total control effort appears in Figure 3. Thus, the control

acceleration effort u required to track the reference orbit while rejecting the nonlinearities varies up

to 0.005 (0.1 mm/s2) about the L2 point. This control acceleration is a continous smooth signal that

is much more efficient, in the sense of control effort, compared to the solar sail acceleration. The

acceleration derived from the solar sail (denoted by aξ, aη, aζ) is plotted in terms of components

for one-month orbits in Figure 4 (a), and the SEP acceleration components appears in Figure 4 (b).

The control acceleration effort derived from the thruster (denoted by uξ, uη, uζ) is order of 10−3 -

10−4, while the acceleration derived from the solar sail is approximately 10−2. The small control

acceleration from the SEP thruster is then applied to ensure that the displacement of the periodic

orbit is constant. The solar sail provides a constant out-of-plane force.

Figure 5 (a) (resp. Figure 5 (b)) illustrates the position error components, denoted by eξ, eη, eζ

(resp. velocity error components, denoted by eξd, eηd, eζd) under the nonlinear control and the SEP

thruster around L2. These Figures show that the motion is bounded and periodic. This observation

implies that the augmented thrust acceleration ensures a constant displacement orbit. The reference

orbit above L2 and the orbit resulting from tracking the reference orbit using the nonlinear control

and the SEP thruster around L2 are also depicted in Figure 6 (a) and 6 (b) respectively.
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Figure 4. (a) Acceleration derived from the solar sail; (b) Acceleration derived from the thruster.
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Figure 5. (a) Position Errors; (b) Velocity Errors.
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Figure 6 (a) Reference orbit above L2; (b) Orbit resulting from tracking the refer-
ence orbit using the nonlinear control and SEP thruster around L2.
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Propellant Usage

Propellant usage for the SEP thruster is proportional to the total ∆V , which is the integration over

time of the magnitude of the control acceleration acceleration produced by using the SEP thruster

so that

∆V =

∫ 2π/ω⋆

0
|u|dt. (60)

The total ∆VTotal over a 5 years mission is given by

∆VTotal = ∆V per orbit × no, (61)

where no is the total number of orbits. Once the total ∆V is computed, the propellant usage can

be found using the rocket equation.

Let us define the mass m of the rocket at a time t, as a function of the initial mass mi, ∆V and

the effective exhaust velocity ve = Isp · g,

m = mie
−∆V/g·Isp . (62)

The mass of propellant is then the difference between the initial and the final masses

mprop = mi − m = mi(1 − e−∆VTotal/g·Isp), (63)

where Isp is the specific impulse (≈ 3000 sec for an electric thruster).

Assume a specific impulse of Isp = 3000 sec and an initial mass of mi = 500 kg, we have the

average ∆V per orbit of approximately 23 m/s. Then, the total ∆V per orbit over 5 years is 1536
m/s. The consumed propellant mass is then mprop = 25 kg. The parameters are summarized in

Table 1.

Table 1. Summary of Parameters.

Parameter Description Value

mi (kg) Initial Mass 500

Isp (sec) Specific Impulse 3000

∆VTotal (m/s) Total ∆V over 5 years 1536

mprop(kg) Propellant Mass Consummed 25

CONCLUSIONS

A hybrid concept for displaced periodic orbits in the Earth-Moon system has been developed.

A feedback linearization was used to perform stabilization and trajectory tracking for nonlinear

systems. The idea of this control is to transform a given nonlinear system into a linear system by use

of a nonlinear coordinate transformation and nonlinear feedback. The augmented thrust acceleration

is than applied to ensure a constant displacement periodic orbit, which provides key advantages for

13



lunar polar telecommunications. A stabilizing approach is then introduced to increase the damping

in the system and to allow a higher gain in the controller. Theoretical and simulation results show

good performance, with modest propellant mass requirements.
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[11] M. Leipold and M. Götz, “Hybrid Photonic/Electric Propulsion,” Kayser-Threde, TR SOL4- TR-KTH-
0001, Munich, Jan. 2002, ESA Contract No. 15334/01/NL/PA.

[12] G. Mengali and A. A. Quarta, “Trajectory Design with Hybrid Low-Thrust Propulsion system,” Journal
of Guidance, Control, and Dynamics, Vol. 30, No. 2, March-April 2007, pp. 419–426.

[13] S. Baig and C. McInnes, “Artificial Three-Body Equilibria for Hybrid Low-Thrust Propulsion,” J. of
Guidance, Control, and Dynamics, Vol. 31, No. 6, November-December 2008, pp. 1644–1655.

[14] V. Szebehely, Theory of Orbits: the restricted problem of three bodies. New York and London: Aca-
demic Press, 1967.

[15] R. Farquhar, “The Control and Use of Libration-Point Satellites,” Ph.D. Dissertation, Stanford Univer-
sity, 1968.

[16] A. E. Roy, Orbital Motion. Bristol and Philadelphia: Institute of Physics Publishing, 2005.

[17] F. Vonbun, “”A Humminbird for the L2 Lunar Libration Point”,” Nasa TN-D-4468, April 1968.

[18] R. Thurman and P. Worfolk, “The geometry of halo orbits in the circular restricted three-body problem,”
Technical report GCG95, Geometry Center, University of Minnesota, 1996.
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