Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Hypervariation and phase variation in the bacteriophage 'resistome'

Hoskisson, P. and Smith, M.C.M. (2007) Hypervariation and phase variation in the bacteriophage 'resistome'. Current Opinion in Microbiology, 10 (4). pp. 396-400. ISSN 1369-5274

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Most bacteria encode proteins for defence against infection by bacteriophages. The mechanisms that bring about phage defence are extremely diverse, suggesting frequent independent evolution of novel processes. Phage defence determinants are often plasmid or phage-encoded and many that are chromosomal show evidence of lateral transfer. Recent studies on restriction-modification (R-M) systems show that these genes are amongst the most rapidly evolving. Some bacteria have contingency genes that encode alternative target specificity determinants for Type I or Type III R-M systems, thus expanding the range of phages against which the host population is immune. The most counter-intuitive observation, however, is the prevalence of phase variation in many restriction systems, but recent arguments suggest that switching off expression of R-M systems can aid phage defence.