Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Bayesian estimation of post-Messinian divergence times in Balearic island lizards

Brown, R.P. and Terrasa, B. and Pérez-Mellado, V. and Castro, J.A. and Hoskisson, P. and Picornell, A. and Ramon, M.M. (2008) Bayesian estimation of post-Messinian divergence times in Balearic island lizards. Molecular Phylogenetics and Evolution, 48 (1). pp. 350-358. ISSN 1055-7903

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Phylogenetic relationships and timings of major cladogenesis events are investigated in the Balearic Island lizards Podarcis lilfordi and P. pityusensis using 2675 bp of mitochondrial and nuclear DNA sequences. Partitioned Bayesian and Maximum Parsimony analyses provided a well-resolved phylogeny with high node-support values. Bayesian MCMC estimation of node dates was investigated by comparing means of posterior distributions from different subsets of the sequence against the most robust analysis which used multiple partitions and allowed for rate heterogeneity among branches under a rate-drift model. Evolutionary rates were systematically underestimated and thus divergence times overestimated when sequences containing lower numbers of variable sites were used (based on ingroup node constraints). The following analyses allowed the best recovery of node times under the constant-rate (i.e., perfect clock) model: (i) all cytochrome b sequence (partitioned by codon position), (ii) cytochrome b (codon position 3 alone), (iii) NADH dehydrogenase (subunits 1 and 2; partitioned by codon position), (iv) cytochrome b and NADH dehydrogenase sequence together (six gene-codon partitions), (v) all unpartitioned sequence, (vi) a full multipartition analysis (nine partitions). Of these, only (iv) and (vi) performed well under the rate-drift model. These findings have significant implications for dating of recent divergence times in other taxa. The earliest P. lilfordi cladogenesis event (divergence of Menorcan populations), occurred before the end of the Pliocene, some 2.6 Ma. Subsequent events led to aWest Mallorcan lineage (2.0 Ma ago), followed 1.2 Ma ago by divergence of populations from the southern part of the Cabrera archipelago from a widely-distributed group from north Cabrera, northern and southern Mallorcan islets. Divergence within P. pityusensis is more recent with the main Ibiza and Formentera clades sharing a common ancestor at about 1.0 Ma ago. Climatic and sea level changes are likely to have initiated cladogenesis, with lineages making secondary contact during periodic landbridge formation. This oscillating cross-archipelago pattern in which ancient divergence is followed by repeated contact resembles that seen between East-West refugia populations from mainland Europe.