Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Molecular interactions in the insulin-like growth factor (IGF) axis: a surface plasmon resonance (SPR) based biosensor study

Allan, G.J. and Beattie, J. and Shand, J.H. and Szymanowska, M. and Flint, D.J. (2008) Molecular interactions in the insulin-like growth factor (IGF) axis: a surface plasmon resonance (SPR) based biosensor study. Molecular and Cellular Biochemistry, 307 (1-2). pp. 221-236. ISSN 0300-8177

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This review describes a comprehensive analysis of a surface plasmon resonance (SPR)-based biosensor study of molecular interactions in the insulin-like growth factor (IGF) molecular axis. In this study, we focus on the interaction between the polypeptide growth factors IGF-I and IGF-II with six soluble IGF binding proteins (IGFBP 1-6), which occur naturally in various biological fluids. We have describe the conditions required for the accurate determination of kinetic rate constants for these interactions and highlight the experimental and theoretical pitfalls, which may be encountered in the early stages of such a study. We focus on IGFBP-5 and describe a site-directed mutagenesis study, which examines the contribution of various residues in the protein to high affinity interaction with IGF-I and -II. We analyse the interaction of IGFBP-5 (and IGFBP-3) with heparin and other biomolecules and describe experiments, which were designed to monitor multi-protein complex formation in this molecular axis.