Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Determination of cross-linking residues in a pharmaceutical polymer by liquid chromatography-high resolution full scan mass spectrometry

Zhang, T. and Watson, D.G. and Lu, D. and Carr, D. and Trager, L. (2008) Determination of cross-linking residues in a pharmaceutical polymer by liquid chromatography-high resolution full scan mass spectrometry. Talanta, 76 (3). pp. 509-512. ISSN 0039-9140

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A liquid chromatography-mass spectrometry (LC-MS) method was developed as limit test for an amine cross-linking residue in a pharmaceutical polymer. The method was based on full scan data with extracted ions for the accurate masses of dicyclohexylmethane-4, 4′-diamine (DMDA) and the internal standard 1,12-diaminododecane (DADD) obtained by Fourier transform MS. Dicyclohexylmethane-4,4-diisocyanate (DMDI) the reactive form of the cross-linking residue was determined as it decomposition product DMDA. Calibration curves for quantification of DMDA were linear in the range 2-100 ng/ml, the LOD was 1 ng/ml or 10 pg on column. Precisions/recoveries for spiked samples at the level of the limit of 1 ppm for DMDA and DMDI were ±9.6%/38.6% and ±14.5/10.0% (n = 3), respectively. Unpredictable recovery was found in the extraction of polymer samples because of the complexity of the matrix and the reactivity of dicyclohexylmethane-4,4-diisocyanate (DMDI). PEG residues extracted from the polymer were found to cause ionization suppression and also affected the chromatography, these effects were reduced by using a gradient program. By using this method the level of amine residues in samples from different batches of polymers were determined to be much lower than the limit of 1 ppm. The method allowed comparison of the results obtained from the polymer before and after purification indicating that the residual DMDA could be decreased by a washing procedure.

Item type: Article
ID code: 7604
Keywords: cross-linking residue, manufacturing impurities, fourier transform mass spectrometry, ion suppression, Pharmacy and materia medica, Chemistry(all)
Subjects: Medicine > Pharmacy and materia medica
Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Unknown Department
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 09 Mar 2009 15:32
    Last modified: 04 Sep 2014 18:32
    URI: http://strathprints.strath.ac.uk/id/eprint/7604

    Actions (login required)

    View Item