Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Factors influencing hydrocortisone permeation into human hair follicles: use of the skin sandwich system

Meidan, V.M. and Eccleston, G.M. and Frum, Y. (2008) Factors influencing hydrocortisone permeation into human hair follicles: use of the skin sandwich system. International Journal of Pharmaceutics, 358 (1-2). pp. 144-150. ISSN 0378-5173

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The aim of the present study was to use the in vitro human skin sandwich system in order to quantify the influence of formulation variables on intrafollicular hydrocortisone permeation. The investigated variables were the pH and the viscosity of the topical formulation as well as the presence of chemical enhancers (carvone, menthone, oleic acid and sodium lauryl sulphate). Furthermore, skin sandwich hydration was also varied in order to determine if the method itself can be run using only partially hydrated skin tissues. It was determined that the follicular contribution to hydrocortisone flux decreased marginally with increasing alkalinity in the pH range 3-8.8. Intrafollicular penetration was markedly reduced when HPMC gels were used instead of an aqueous solution. Pretreating the skin with chemical enhancers also reduced the follicular contribution to flux, probably due to permeabilisation of the continuous stratum corneum. Furthermore, it was not possible to satisfactorily modify the skin sandwich method so that it could be deployed using less hydrated skin.