Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D

Li, Qiang and Mcneil, Brian and Harvey, L.M. (2008) Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D. Free Radical Biology and Medicine, 44 (3). pp. 394-402. ISSN 0891-5849

[img]
Preview
PDF (strathprints007574.pdf)
strathprints007574.pdf

Download (384kB) | Preview

Abstract

In the present study, we used a recombinant filamentous fungus strain, Aspergillus niger B1-D, as a model system, and investigated the antioxidant defences in this organism. Our findings indicate that pretreatment with low concentrations of H2O2 completely prevents killing by this oxidant at high concentrations. It shows that A. niger adapts to exposure to H2O2 by reducing growth and inducing a number of antioxidant enzyme activities, including superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, of which the induction of catalase is the most pronounced. Moreover the decline of these antioxidant enzymes activities after H2O2 detoxification, coincides with recommencement of growth. Results from monitoring the extracellular H2O2 concentration clearly indicate a very rapid detoxification rate for H2O2 in adapted A. niger cultures. A mathematical model predicts only very low concentrations of intracellular H2O2 accumulating in such cultures. Our results also show that glutathione plays a role in the oxidative defence against H2O2 in A. niger. On addition of H2O2, the intracellular pool of glutathione increases while the redox state of glutathione becomes more oxidized.