Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Stereoselective enolizations mediated by magnesium and calcium bisamides: Contrasting aggregation behaviour in solution and in the solid-state

He, X.Y. and Allan, J.F. and Noll, B.C. and Kennedy, A.R. and Henderson, K.W. (2005) Stereoselective enolizations mediated by magnesium and calcium bisamides: Contrasting aggregation behaviour in solution and in the solid-state. Journal of the American Chemical Society, 127 (19). pp. 6920-6921. ISSN 0002-7863

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The reactions of magnesium and calcium bis(hexamethyldisilazide) with propiophenone have been studied with a view to determine the utility of these bases in the stereoselective enolization of ketones and to uncover the nature of the metal enolate intermediates produced. Both base systems are highly Z-selective when the reactions are conducted in the presence of polar solvents. However, in situ monitoring of the magnesium system in arene solution revealed a preference for E-enolate formation, which was confirmed by silyl enol ether trapping studies. Solution NMR studies of the magnesium system in toluene-d8 show the presence of a monomer-dimer equilibrium for the intermediate amidomagnesium enolates. This assignment is supported by the characterization of a disolvated amidomagnesium enolate dimer by crystallographic analysis. Comparative studies of the calcium system show distinctly different behavior. This is exemplified by the characterization of a novel solvent-separated ion pair complex and a monomeric amidocalcium enolate in the solid state. Solution NMR studies of the calcium system in pyridine-d5 reveal the co-existence of the heteroleptic amidocalcium enolate, the bisamide, the bisenolate and the ion pair complex.