Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Stereoselective enolizations mediated by magnesium and calcium bisamides: Contrasting aggregation behaviour in solution and in the solid-state

He, X.Y. and Allan, J.F. and Noll, B.C. and Kennedy, A.R. and Henderson, K.W. (2005) Stereoselective enolizations mediated by magnesium and calcium bisamides: Contrasting aggregation behaviour in solution and in the solid-state. Journal of the American Chemical Society, 127 (19). pp. 6920-6921. ISSN 0002-7863

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The reactions of magnesium and calcium bis(hexamethyldisilazide) with propiophenone have been studied with a view to determine the utility of these bases in the stereoselective enolization of ketones and to uncover the nature of the metal enolate intermediates produced. Both base systems are highly Z-selective when the reactions are conducted in the presence of polar solvents. However, in situ monitoring of the magnesium system in arene solution revealed a preference for E-enolate formation, which was confirmed by silyl enol ether trapping studies. Solution NMR studies of the magnesium system in toluene-d8 show the presence of a monomer-dimer equilibrium for the intermediate amidomagnesium enolates. This assignment is supported by the characterization of a disolvated amidomagnesium enolate dimer by crystallographic analysis. Comparative studies of the calcium system show distinctly different behavior. This is exemplified by the characterization of a novel solvent-separated ion pair complex and a monomeric amidocalcium enolate in the solid state. Solution NMR studies of the calcium system in pyridine-d5 reveal the co-existence of the heteroleptic amidocalcium enolate, the bisamide, the bisenolate and the ion pair complex.