Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Social potential model to simulate emergent behaviour for swarm robots

Mabrouk, M.H. and McInnes, C.R. (2008) Social potential model to simulate emergent behaviour for swarm robots. In: 13th International Conference on Applied Mechanics and Mechanical Engineering (AMME-13), 2008-05-27 - 2008-05-29.

[img]
Preview
Text (strathprints007528)
strathprints007528.pdf - Accepted Author Manuscript

Download (220kB) | Preview

Abstract

Swarm robotics has a wide range of applications in numerous fields from space and sub-sea exploration to the deployment of teams of interacting artificial agents in disposal systems. In this paper, we introduce a model to simulate the emergent behaviour of multi-agent robot systems, based on principles from physical mechanics. The model is based on mutual interactions among the swarm individuals. The main elements of these interactions are repulsion forces, attraction forces, alignment forces and dissipative forces generated by the swarm members. Using statistical tools, which are used to investigate simulated group behaviour, we discuss the importance of introducing some dissipation to the system as well as the effect of the interaction parameters on various components of the model.