Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Procedural influences on non-linear distortions in welded thin-plate fabrication

Mollicone, P. and Camilleri, D. and Gray, T.G.F. (2008) Procedural influences on non-linear distortions in welded thin-plate fabrication. Thin-Walled Structures, 46 (7-9). pp. 1021-1034. ISSN 0263-8231

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Fusion welding is the most common and convenient method used for the fabrication of large, thin-plate welded structures. However, the resulting tendency to out-of-plane distortion exacts severe design and fabrication penalties in terms of poorer buckling performance, lack of fairness in external appearance, poor fit-up and frequent requirements for expensive rework. This study forms part of a long-term project that has the aim of modelling welding and related fabrication processes computationally with particular emphasis on the out-of-plane distortion outcomes. Throughout the present work the computational models have been cross-referenced to realistic experimental test cases. A repeated finding of the trials was that minor variations in fabrication procedures, were found to have significant effects on distortion. In particular, the pre-fabrication procedures, including spot and tack welding, have a significant effect on the initial out-of-plane distortion leading to differences in distortion of the post-welded structures. The support and clamping conditions during welding and cooling of welded thin-plate structures were also found to have a considerable influence on the final predicted out-of-plane distortion. The outcomes often result in different buckling instability behaviour. This paper concentrates on these aspects and draws on studies of buttwelding between plates of thicknesses 3-8 mm.