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Abstract

In this paper we investigate the use of Gaussian emulators to give an accurate and

computationally fast method to approximate return maps, a tool used to study the dy-

namics of differential equations. One advantage of emulators over other approximation

techniques is that they encode deterministic data exactly, so where values of the return

map are known these are also outputs of the emulator output, another is that emulators

allow us to simultaneously emulate a parameterized family of ODEs giving a tool to

assess the behavior of perturbed systems. The methods introduced here are illustrated

using two well-known dynamical systems: The Rössler equations, and the Billiard sys-

tem. We show that the method can be used to look at return maps and discuss the

further implications for full computation of differential equation outputs.

KEY WORDS: Billiard system; Chaotic and non-chaotic dynamic systems; Computer code
output models; Emulators; Gaussian process; Poincaré return map; Rössler flow.

1 Introduction

The dynamical behaviour of many real world systems can be modeled by a set of ordinary
differential equations. Numerical simulation of such systems is usually fairly straightforward,
but always involves a tradeoff between accuracy and computation time. In many applications
we need to carry not both accurate and fast simulations. Therefore it is of interest to find
alternative ways to perform computations.

These mathematical models described the complex dynamical systems are typically im-
plemented in computer codes. Often, the mathematical model is highly complex, and the
resulting computer code is large and may be expensive in terms of the computer time re-
quired for a single run. Nevertheless, running the computer model will be much cheaper
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than making direct observations of the process. A range of tools have been developed us-
ing Bayesian statistics to tackle many important problems faced by users and developers of
complex process models.

These methods can be seen as developments of work on Design and Analysis of Computer
Experiments (DACE) in the 1980s, which introduced the fundamental idea of building a
statistical emulator of a simulator model (see, Sacks et al (1989a, b), Welch et al (1992)
and Morris et al (1993)). The Bayesian analysis of Computer Code Outputs (BACCO)
extends this approach both in terms of emulation of more complex behaviour and in terms
of methodology to employ emulators to address a wide range of practical questions in the
development and use of process models (see O’Hagan (2006) and the references therein for a
comprehensive tutorial).

An emulator is not only statistical approximation to the model of interest (simulator), but
it is built using statistical methods. Given a set of training runs of the model, considered as
the model inputs, the model outputs can be evaluated/ovserved. We then treat these inputs
and outputs to estimate the model. The form of emulator used in the BACCO approach
is the Gaussian process, which is an analytically very tractable of stochastic process. A
property fitted Gaussian process emulator will satisfy the following two fundamental criteria:
1) at a design training point, the emulator should reflect the fact that the true value of
the model output is known, so it should return the corresponding model output with no
uncertainty; 2) at the other points, the distribution for the model given a mean value that
represents a plausible interpolation or extrapolation of the training data, and the probability
distribution around this mean should be a realistic expression of uncertainty about how
the model might interpolation/extrapolation. Haylock and O’Hagan (1996), Kennedy and
O’Hagan (2001) and Oakley and O’Hagan (2002) use the Gaussian emulators to approximate
the deterministic and computationally expensive computer codes output models.

Once the Gaussian process emulator has been built, various analyses can be made with-
out more simulation runs. The simplest such analysis is to predict the outputs at inputs
not previously run on the simulator. An application of these processes to select input and
prediction in computer models is given in Welch et al (1992). Furthermore, using these em-
ulators is already well established for uncertainty and sensitivity analyses (see Oakley and
O’Hagan, 2002, 2004). Kennedy et al (2006) present a number of recent case studies in which
an emulator of a computer code is created using a Gaussian process model. They used this
emulator to illustrate the sensitivity and uncertainty analysis.

The Gaussian process emulators have recently been used in the context of dynamical
systems by Conti and O’Hagan (2007). They developed the multi-output emulator which can
form the basis for emulation of dynamic simulators. The dynamic simulator they considered
models a system that is evolving over time and operate iteratively over fixed time steps. A
single run of such a simulator generally consists of a simulation over many time steps, and it
can be thought in terms of a simpler, single-step simulator being run iteratively many times.
However, there are a number of technical difficulties that arise from the time parameter in
the emulator. The key to the multi-output emulator’s improved performance relative to the
time-input emulator lies in its more flexible modelling of correlations over time, but this is
also a source of extra computational load through the need for larger training samples. Thus,
this method could be still slow for ordinary differential equations due to the emulation of a
large number of single-step functions.

This paper explores a different approach which largely eliminates the need to include
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the time parameter, namely the use of Poincaré return maps, and more generally the use of
cross sections. Fast simulation of dynamical systems can then be achieved by the iteration
of mappings between cross sections, together with conventional numerical solution methods
to get to and from the cross sections at the start and finish of a simulation.

The paper illustrates the construction of this map for two well known examples. In the
first example, we emulate the Poinacré return map for Rössler flow (a comprehensive review
of construction of this map for this system can be found in Basu, 2007). We also estimate the
Poinacré return map for the Lorenz attractor (introduced in 1963 by Lorenz) and calculated
by the numerical methods in Henon (1982) and Tucker (2002). We now review some of the
required background material for dynamical systems and emulators, in order to provide the
context for our work.

1.1 Dynamical systems

This section recalls some well-known concepts from dynamical systems theory (see Katok
and Hasselblatt (1996), Hirsch et al (2003), Strogatz (1994) and references therein). We
start with an ordinary differential equation, whose solution gives a flow, that is, a mapping
parameterized by time t. We suppose that the differential equation is defined on a space X

(a “nice” subset of R
n), and that it has unique solutions given by a flow

Φt : X → X.

Furthermore, we suppose that there are parameters, a, in the differential equations that
we want to study the effect of. So the flow is really a function of these parameters, Φt,a.
Typically we are only interested in parameters in some open neighbourhood of a particular
value a0. For most of the discussion we shall drop the parameter.

A point x ∈ X is (forward) recurrent if for any open neighbourhood U of x, there is a
time t > 0 such that Φt(x) ∈ U . Otherwise the point is transient.

In practical applications we see a mixture of recurrent and transient behaviour. Recurrent
behaviour can be “nice”, for example where you have a periodic orbit (a point that returns
to itself after some time) or chaotic (where there is a forward invariant set K, Φt(K) ⊂ K in
which any point in K returns near any other point in K infinitely often). Transient behaviour
is also important in practical applications. However, either transient points go off to infinity
or they converge to some recurrent set.

As the numerical solution of the flow takes some computational effort, we are interested
in ways to reduce this, or to compactly represent the flow.

A set Y ⊂ X is a cross-section to the flow if whenever y ∈ Y , Φt(y) 6∈ Y for all small t > 0.
In other words, the flow moves points off of Y . A cross-section should have one dimension
less than that of X , that is, it is of co-dimension 1. The notion of a cross section can be used
for both transient and recurrent situations. Suppose that Y0 and Y1 are cross-sections to the
flow. Then we can define an induced mapping r : Y0 → Y1 ∪ {∞} and a first-hitting time
h : Y0 → R ∪ {∞} as follows by

h(y) =

{

inf{t : Φt(y) ∈ Y1} if Φt(y) ∈ Y1 for some t > 0, or
∞ otherwise
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and

r(y) =

{

Φh(y)(y) if h(y) < ∞, or
∞ otherwise.

In computational studies one typically considers an initial starting point y and takes Y0

to be a “flat disc” around y transverse (perpendicular) to the flow. We then flow from y for a
chosen time to reach a point y1, and define Y1 as a “flat disk” transverse to the flow around
y1.

For computational reasons it is good to choose Y0 and Y1 as easily described sets- for
example by fixing one coordinate to get a co-dimension 1 subspace. Note that the first
hitting time function h will generally be non-linear. In principle we could make h a simple
function - a constant - by choosing to flow for a fixed time with every point of Y0. However,
this makes Y1 a much more complicated space. Hence either Y1 is easy to describe and h is
complicated, or the other way around.

The flow - at least from Y0 and Y1 - is entirely specified by the mappings r and h. If we
consider a parameterized family of flows, with a vector of parameters a, then the mappings r

and h are also indexed by these parameters. There are some technical issues here - however,
in general the same cross sections can still be used for nearby parameters, and so one can
represent the effect of changing parameters purely in the return map and return time function.

When the flow is recurrent then we could take Y0 = Y1 and the mapping h is called a
Poincaré return map. When the flow is transient one might consider a whole sequence of
subspaces Y0, Y1, Y2, . . . which are visited in that order, with corresponding maps hi, ri.

From a computational point of view, the reason for doing this is that if we have a rapid
way of computing the maps, then we could calculate Φt(x) for any t and x quite quickly. The
flow is solved from its initial condition x until it first reaches a cross section Yi say, at time
ti and at point yi.

If ti < t < ti + hi(yi) then the flow is solved until you get to time t. However, if
t > ti + hi(yi) then you can jump by the mapping to the next point

yi+1 = ri(yi) = Φti+hi(yi)(x)

This process is iterated so that the point jumps from one cross-section to the next, until the
cumulative time as measured from the return time function is almost equal to t. The flow is
computed conventionally from the last cross-section point.

There is clearly a computational balance here. Computing lots of maps along the flow
might be a lot of work, however, iterating maps is much faster than stepwise solution of
differential equations. Because of the difficulty of computing, approximating and representing
return maps, this computational method is not in use. However, our use of Gaussian process
emulators makes such a computational strategy a realistic option.

It should be noticed that when we compute the flow in this way, we are effectively iterating
the maps hi(hi−1(hi−2 . . . h1(y1) . . .)), which means we are coupling emulators in chains. This
raises the possibility that chains of emulators could themselves be emulated in order to provide
even faster computations.

1.2 Gaussian processes

Large computer codes to implement very complicated mathematical models are comprehen-
sively used in all fields of science and technology to explain and understand complex systems.
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This program is called a simulator. The simulator that we are dealing with in this paper
is assumed to be deterministic in the sense that we will get the same output for running
simulator for the same input many times. The size and complexity of a simulator can be-
come a problem when it is necessary to make very many runs at different inputs. The most
simulation methods, in particular, standard Monte Carlo based methods require thousands
of simulator runs. This can become infeasible even for moderately large computer models
which requires just a few seconds per run.

Following Sacks et al. (1989), a two-stage approach bases on emulation (see also Haylock
and O’Hagan, 1996; Kennedy and O’Hagan, 2001; O’Hagan, 2006) of the simulator’s output
has been developed which is offering substantial efficiency gains over standard Monte carlo-
based methods. The simulator can be represented in the form of a function y = f(x), and the
process of generating one set of outputs y for one particular input configuration x is called a
run of the simulator. A Bayesian formulation assumes a Gaussian process prior distribution
for the function f(.), conditional on various hyperparameters. This prior distribution is
updated using as data a preliminary training sample {y1 = f(x1), . . . , yn = f(xn)} of n

selected simulator runs. Formally, the posterior mean of f(.) is regarded as the emulator. The
derived posterior distribution is also a Gaussian process conditional on the hyperparameters.
The conditioning upon the training set forces realisations from the emulator to interpolate
the observed data points and induces posterior distributions for the hyperparameters.

The emulator is built in the first stage of the approach mentioned above, then problems
such as uncertainty analysis, sensitivity analysis or calibration are tackled in the next stage
using the emulator. It should be noticed that the emulator runs almost instantaneously,
therefore the computational cost of the emulator based approach lies in producing the training
data. The efficiency gains arise because it is usually possible to emulate the simulator output
to a higher degree of precision using only a few hundred runs of the simulator.

We first review the emulation of the multi-output simulator introduced by Conti and
O’Hagan (2007). We consider a deterministic simulator that return outputs y ∈ R

q from
inputs x lying in some input space X ⊆ R

p. The simulator is essentially a function f : X 7→
R

q; that is, f(x) = (f1(x), . . . , fq((x))T . Despite y = f(x) being in principle known for any
x, in practice the complexity of the simulator requires to run the computer code to determine
y. From a Bayesian perspective, we thus regard f(.) as an unknown function, and following
O’Hagan et al. (1999) model the uncertainty around this function can be represented by
means of the q-dimensional Gaussian process as follows

f(.)|B, Σ, r ∼ Nq(m(.), c(., .)Σ) (1)

The notation in (1) meant that for all x,

E{f(x) | B, Σ, r} = m(x)

and for all x and x′,
Cov{f(x), f(x′) | B, Σ, r} = c(x,x′)Σ,

where c(., .) is a positive-definite (correlation) function such that c(x,x) = 1 for every x.
Therefore, we assume a stationary, separable covariance structure, with covariance between
the outputs at any single input given by the matrix Σ = [σjj′ ] ∈ R

+
q×q and with c(., .)

providing correlation across X . We model the mean and covariance functions in terms of
further unknown hyperparameters B and R by

m(x) = BTh(x)
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c(x,x′) = exp{−(x− x′)T R(x − x′)} (2)

Here h : X 7→ R
m is an arbitrary vector m regression functions h1(x), . . . , hm(x) shared by

each individual function fj(.), j = 1, . . . , q; B = [β1, . . . , βq] ∈ Rm,q is a matrix of regression
coefficients; and R is a diagonal matrix of p positive smoothness parameters r = (r1, . . . , rp).

The selection of the prior mean structure should be driven by both experience and sim-
plicity; a linear specification h(x) = (1,x)T has been found to be adequate in most applica-
tions. The form of c(., .) presented in Equation (2) is seen to be mathematically convenient
choice, and implies that fj(.) are infinitely differentiable with probability 1 (see Kennedy and
O’Hagan, 1996).

We start by running the computer code on a pre-selected design set S = {s1, . . . , sn} ⊂ X
which yields simulations organised in the output matrix D = [fj(sr)] ∈ Rn,q. These are the
training data from which the emulator is built. The set S is selected in accordance with
some space-filling experimental design criterion (e.g., the maximum Latin-hypercube design
of Morris and Mitchell, 1995).

The multi-output emulator is formally identified by the posterior distribution of f(.) given
data D. To derive this posterior distribution, we first note that, from (1) and (2), the
joint distribution of D conditional on hyperparameters B, Σ and R is the matrix-normal
distribution

D | B, Σ, R ∼ Nn,q(HB, Σ ⊗ A) (3)

where HT = [h(s1), . . . ,h(sn)] ∈ Rm,n, A = [c(sr, sl)] ∈ R
+
n,n and ⊗ denotes the Kronecker

product operator. Standard normal theory in addition to some matrix manipulations lead
to the following conditional posterior distribution for the simulator:

f(.) | B, Σ, R, D ∼ Nq(m
∗(.), c∗(., .)Σ), (4)

where for x1,x2 ∈ X

m∗(x1) = BTh(x1) + (D − HB)T A−1t(x1),

c∗(x1,x2) = c(x1,x2) − tT (x1)A
−1t(x1),

with tT (.) = [c(., s1), . . . , c(., sn)] ∈ R
n.

The posterior distribution of f(.) conditional on R alone is found by integrating of (4) with
respect to the posterior distribution of B and Σ. Since any substantial information about
such parameters will hardly ever be elicited from the code developers, the conventional non-

informative prior π∗(B, Σ | R) ∝ |Σ|−
q+1

2 is selected. Combining the distribution in (4) and
π∗ using Bayes’ theorem yields

f(.) | Σ, R, D ∼ Nq(m
∗∗(.), c∗∗(., .)Σ), (5)

with
m∗∗(x1) = B̂Th(x1) + (D − HB̂)T A−1t(x1)

c∗∗(x1,x2) = c∗(x1,x2) + [h(x1) − HT A−1t(x1)]T (HT A−1H)−1[h(x2) − HT A−1t(x2)]

where B̂ = (HT A−1H)−1HT A−1D is the generalised least squares estimator of B. Provided
now that n ≥ m + q, so that all ensuing posteriors are proper, the conditional posterior
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distribution of f(.) given R then follows the q-variate Student’s process with n − m degrees
of freedom

f(.) | R, D ∼ Tq(m
∗∗(.), c∗∗(., .)Σ̂; n − m) (6)

where Σ̂ = (n − m)−1(D − HB̂)T A−1(D − HB̂).
The final step to producing the emulator is to integrate (6) with respect to the posterior

distribution of R. Unfortunately this cannot be done analytically, and a full MCMC-based
marginalisation of (6) with respect to the unknown smoothness parameters in R is com-
putationally expensive. A satisfactory alternative lies in plugging-in posterior estimates of
(r1, . . . , rp). Kennedy and O’Hagan (2001) found uncertainty about R to be relatively unim-
portant.

Given the estimated roughness parameters, the posterior process in (6) is the emulator
of the simulator f(.). The mean function m∗∗ interpolates the training data exactly and
provides an approximation to f(.) that can be used as a fast surrogate for the simulator.
It should be stressed, though, that the emulator is more than just a code’s approximation,
because, the estimated covariance structure c∗∗(., .)Σ̂ provides a measure of the accuracy of
the approximation. The size n of the design set is ideally selected to be large enough to make
the emulator variance small at all points of interest in the input space.

2 Emulation of dynamical systems

Dynamic simulators model the evolution of state variables over a number of time steps. If we
are interested in the state variables (or some transformation of them) after a fixed number of
time-steps, then ordinary emulation techniques will suffice. However, if we want to emulate
the behaviour of the simulator over a number of time steps, we need a different formulation.
Suppose that the dynamic model produces a vector of outputs y = (y1, . . . , yT ) spanning
the simulation time period t = 1, . . . , T and that a data matrix D as in Subsection 1.2 is
obtained from some set of training runs. In 2007, Conti and O’Hagan proposed the following
procedures for emulating such a dynamic simulator.

1. The first method consists of using multi-output emulator, developed by Conti and
O’Hagan (2007), where the dimension of the output space is q = T and we assume that
the outputs of the dynamic model is presented by y = (y1, . . . , yT ).

2. The second approach is required just one single-output emulator, following an idea
originally mentioned by Kennedy and O’Hagan (2001) to analysis the spatial outputs.
The time is considered as an extra input for this model, and the output yt = ft(x) can
now be presented as f∗(x, t), where t = 1, . . . , T . Therefore, emulation of f(.) can be
obtained by emulating f∗(., .). The training set for construction this emulator consists
of nT outputs generated by inputs in the grid S × {1, . . . , T}, where X = {x1, . . . , xn}
denote to the pre-selected design set to obtain the outputs by running the computer
code on this set.

3. The third approach is to emulate the T outputs separately, each via a single-output
emulator. Data for the t-th emulator would be then provided by the corresponding
column of the data set.
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Unfortunately, these emulators have some disadvantages either in terms of flexibility or
computational efficiency which make the emulation of the dynamic simulators expensive or
infeasible in some situations (see Conti and O’Hagan (2007)). Although these methods are
theoretically straightforward, but there are two main disadvantages to use these approach
directly: first, the dimension of the input space X becomes very large because it must include
the whole time sequence of the (forcing1) inputs; second, the resulting emulator is specific
to a particular T , and if we choose to consider runs over a different time span it will be
necessary to rebuild the emulator from scratch. Conti et al (2007) proposed a new method
based on the theory of emulation of multi-output models to solve the issue of emulating
dynamic simulators. They broke the simulator down into its single-step action on the state
variables and then emulate the required series by iteratively using an emulator of the single-
step function. They also claimed that massive savings in computation time can be made by
using a simple approximation. We briefly introduce this method here.

At time step t, the simulator may be written in the following form, Yt = f(zt,Yt−1),
where Yt−1 is the state vector at the start of the time step, zt = (x,wt) subsumes both
the constants x and the forcing inputs wt at time step t, and the simulator outputs the new
state vector Yt. The sequence of state vectors is written as {Y0, . . . ,YT }.

A run of the simulator over the time steps 0 to T can then be expressed recursively in
terms of the single-step simulator:

YT = f(zT ,YT−1) = f(zT , f(zT−1,YT−2))

= . . . = f(zT , f{zT−1, . . . , f(z1,Y0)}) = f (T )(x, z,Y0) (7)

where fT (.) represents the T step simulator, which takes as its inputs the constantsx, the
whole sequence z = {zt : t = 1, . . . , T} of forcing inputs and the initial state vector Y0. We
then emulate the single-step simulator f(.) and use this to emulate f (T )(.). It is claimed that
the dimension of the input space, unlike the methods proposed in Conti and O’Hagan (2007),
is more manageable, and the emulator can be used for simulator runs of any length. The
details of this approach can be found in Conti et al. (2007).

This method could be still slow due to emulating large number of single-step functions.
In the next section, we present an alternative approach which largely eliminates the need
to include the time parameter namely the use of Poincaré return maps, and more generally
the use of cross sections. Fast simulation of dynamical systems can then be achieved by the
iteration of mappings between cross sections, together with conventional solution methods
to get to and from the cross sections at the start and finish of a simulation.

3 Emulation of the Poincaré return map

We present a new method to study the behaviour of the dynamic simulator over a number of
time steps by emulating the Poincaré return maps. The method described above to emulate
the dynamic system depends on the time parameter, while our method based on emulating
the Poincaré return map largely eliminates the need to include time parameter. Furthermore,
in many situation, the computing the Poincaré map is an infeasible task or required expensive
numerical methods.

1Forcing inputs vary from one time step to the next and represent external influences on the system (see
Conti et al, 2007).
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Figure 1: The strange attractor for the Rossler flow.

In this section, we use two well known examples to exhibit our method. Our method is
very simple and to approximate the Poincaré map just requires few evaluations of this map
at some selected initial points of the dynamic system under study. This method is also able
to provide us an uncertainty bound around the approximation.

We first consider the Rossler flow dynamic system defined in terms of following set of
differential equations:

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c) (8)

Here, (x, y, z) ∈ R
3 are dynamical variables defining the phase space and (a, b, c) ∈ R

3 are
parameters. We first use Rossler’s parameter values a = b = 0.2, c = 5.7. Consider Figure
1 which shows a typical trajectory of the 3-dimensional Rossler flow. It wraps around the
z axis, so a good choice for a Poincaré section is a plane passing through the z axis. We
suggest the y axis as a Poincaré section which is conveniently defined as

P = {(xn, zn) ∈ R
2| yn = 0}

Once a particular Poincaré section is picked, we could also exhibit the Poincaré return
map. The use of Poincaré maps reduces the study of flows to the study of maps and also
reduces the dimension of the system by 1. We therefore may restrict our attention to points
exclusively lying in the Poincaré section P . Unfortunately, except under the most triv-
ial circumstances, the Poincaré map cannot be expressed by explicit equations. Obtaining
information about the Poincaré map thus requires both solving the system of differential
equations, and detecting when a point has returned to the Poincaré section. The system of
differential equations could be solved by using the numerical integration methods, such as
the Euler method, the midpoint Euler and the Runge-Kutta. The return map obtained from
these methods required too many integration steps that could be infeasible for some complex
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dynamic systems. Furthermore, the return map obtained from these methods is depended
on the initial value and we cannot yield a return map corresponding to a set of initial values
representing the whole system.

The emulation-based method to approximate the Poincaré return map and the first hit-
ting time is much easier to use and does not require too many evaluations of the maps (or
integration steps). We can also approximate the Poincaré return map and the first hitting
map in terms of the selected initial values which covered the whole system space. These
initial values can be selected by using maxmin2 Latin hypercube design method. We denote
the selected initial values by X, and then detect their first return points to the hyperplane
P , denoted by Y. Therefore, the data to train the Gaussian process to emulate the Poincaré
return map is considered as D = {(X,Y)}.

We start with a one-dimensional return map. This map is derived by taking norm of the
first return points to P . To fit a Gaussian process to the model, we detect 20 return points
lying in the Poincaré section. We detect these points in terms of the same initial value and
parameter values mentioned above. We use these points to train the Gaussian process and
approximate the hyperparameters of the fitted Gaussian process. The Poincaré return map
is then the posterior mean of this Gaussian process. Figure 2 illustrates the emulation of the
Rössler flow’s return map and the 95% uncertainty bound around the posterior mean of the
fitted Gaussian. It should be noticed that the method approximate the the training points
with no uncertainty. Figure 3 shows the same map by using the Runge-Kutta numerical
method with 10000 integration runs.

We are also able to emulate the first-hitting-time map (see Section 1.1). We first generate
8 data points on the Poincaré and then flow the system from these points to calculate their
first hitting time’s to the Poincaré section and their corresponding first return points. Figure
4 displays the emulation of the first-hitting-time map for the system introduced above, where
tn is the first hitting time of the chosen points crossing the Poincaré section and Rn is the
norm of the first return points to P . In the middle of this figure, there is considerable of
uncertainty that can be reduced by choosing larger number of training points.

We now use the theory of emulation of multi-output model described in Subsection 1.2
to emulate a two-dimensional return map. The Gaussian process is trained by evaluating
the Poincaré return map at five data points generated by GEM-SA software. These return
points are calculated according to different initial values. Figure 5 (a) shows the emulation of
the first return map and the %95 confidence bound around the posterior mean of the fitted
Gaussian process. The bound around each point in the figure is very tight. A clear image of
the uncertainty bound of the marked point in Figure 5 (a) is given in Figure 5 (b).

3.1 Bifurcation diagram

A bifurcation diagram provides a nice summary for the transition between different types of
motion that can occur as one parameter of the system is varied. A bifurcation diagram plots
a system parameter on the horizontal axis and a representation of an attractor on the vertical
axis. In other words, given the set of differential equations that models dynamic system with
one parameter:

dx

dt
= f(x, α), x ∈ R

n, α ∈ R

2The GEM-SA software is able to generate these initial points according to this design.

10



0 5 10 15 20 25
0

5

10

15

20

25
Emulated return map with 21 intial values

0 5 10 15 20 25
0

5

10

15

20

25

R
n

R
n
+

1

 

 
Data

Mean

95/% conf. Int. Deviations

Figure 2: The emulation of the Rössler flow’s return map with 21 training points and a
sample of size n=401 to verify our approximation where the initial points are [0, 1, 0] and
the parameters are a=b=0.2, c=5.7.
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Figure 3: The first return map of the Rössler flow for section y = 0 by using n = 10000 with
the same initial points and parameter values as mentioned in Figure 2.
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Figure 4: The emulation of the first-hitting-time map of the system shown in Figure 1 for
section y = 0 with only 8 training points.

the generation of the bifurcation diagram consists of finding one stable fixed point and then
using a continuation method to find the next fixed point based on the following condition

f(x, α) = 0 (9)

which defines a smooth one-dimensional curve in R
n.

In this section, we use the emulator to plot the bifurcation diagram of the Rössler flow
system. Given a particular value of a parameter and a staring point, R0 on the Poincaré
map of the system, emulated by Gaussian process, we can determine the next point crossing
the Poincaré section. We iterate this process to get the fixed point(s). We then repeat this
process for all values of the parameter of interest.

Figure 6 shows the emulation of the Bifurcation diagram versus parameter c of the Rössler
system when we let c changes in its domain and fix a = b = 0.1. The horizonal axis shows
c’s values. changing from 0.5 t 40. and the vertical axis is Rn = norm(xn, zn) where (xn, zn)
are the points on the Poincaré section y = 0.

4 Computing Derivatives

In many situations we are interested in not only the propagation of a single initial point x,
but also a whole neighbourhood of x in the Poincaré section P . Such information allows us
to make predictions about the future of x, incorporating a limited amount of uncertainty
in its measurement. In almost any physical application, this is very desirable, if not an
absolute necessity. This prompts us to compute the matrix of derivatives (in particular,
partial derivatives) DP of the Poincaré map P. Once we know DP, we can compute its
eigenvalues and eigenvectors which can be used to classify periodic orbits.
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Figure 5: The emulation of two-dimensional return map for the Rössler flow where a=b=0.2,
c=5.7 with 5 training data points.
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Figure 6: The emulated Bifurcation diagram versus parameter c of the Rössler system.

In this section, we show how properties of the Gaussian process model allow us to include
information about derivatives of the Poincaré map. The derivatives of a function f(.) are
modelled using Gaussian processes in O’Hagan (1992). If my uncertainty about f(x) is
modelled with a Gaussian distribution, then my uncertainty about any linear combination
of f(.) is also modelled by a Gaussian distribution. My uncertainty about the derivative of
f(x), defined as

f ′(x) = lim
u→0

{
1

u
f(x + u) − f(x)}, (10)

also then is modelled by a Gaussian distribution provided limit exists. In particular, if

E(f(x) | BT ) = BT h(x) and Cov(f(x), f(x′) | σ2) = c(x,x′)Σ,

then
E(f j(x) | B) = BT hj(x) (11)

Cov(f j(x), f i(x′) | B, Σ, r) = cji(x,x′)Σ (12)

where

f j(x) =
djf(x)

dxj
, hj(x) =

djh(x)

dxj
, cji(x,x′) =

di+jc(x,x′)

dxjdx′i
, (13)

assuming that these derivatives exist.
The derivative of the vector h(x) is reached by applying Equation (10) to each individual

element. Follow the same reasoning as in Section 1.2 the posterior distribution for f j(x) | D

is given by
f j(.) | R, D ∼ Tq(m

∗∗

j (.), c∗∗j (., .)Σ̂; n − m) (14)
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where
m∗∗

j (x1) = B̂T hj(x1) + (D − HB̂)A−1tj(x1),

c∗∗j (x1, x2) = c∗j (x1,x2) + [hj(x1) − HT A−1tj(x1)]T (HT A−1H)−1[hj(x2) − HT A−1tj(x2)]

This structure gives us a means of combining information about the derivative of f(.) at
a point with observations directly from f(.). From a technical point of view it means that
when a function f is n-times continuously differentiable, we can approximate it and those
derivatives simultaneously. In the language of topology we can approximate in the Cn topol-
ogy.

5 Emulation of Non-Chaotic dynamic system

One of the special features of the Rössler equations is that the flow is dissipative. Our second
example also shows complex dynamics, but is a conservative system (points are not ”squashed
together”) and hence is a qualitatively different type of example. The method described above
can be applied to emulate the Poincaré return map of the non-chaotic dynamic systems. We
emulate the first return map of a Billiard system as an example in this section.

A billiard is a dynamical system in which a particle alternates between motion in a straight
line and reflections off a boundary. When the particle hits the boundary it reflects from it
without loss of speed. Billiard dynamical systems are Hamiltonian idealizations of the game
of billiards, but where the region contained by the boundary can have shapes other than
rectangular and even be many dimensional. The Billiard systems capture all the complexity
of Hamiltonian systems (see Goldstein, 1980), from integrability to chaotic motion, without
the difficulties of integrating the equations of motion to determine its Poincar map.

We choose a rectangle table, and the initial position and velocity (angle) of a trajectory
are specified through the GEM-SA software. The phase space or Poincaré section consists of
two variables: the location on the boundary at which the point particle collides denoted by
t and defined by the parametric equations describing the table; and and the incident angle
φ gives the direction of the point particle after the collision and is measured relative to the
normal of the boundary at the collision point. The horizontal angle θ gives the direction of
the point particle after the collision with respect to the horizontal.

The dynamic of this system can be simply represented in terms of the Poincaré return
map, P : (tn, θn) 7→ (tn+1, θn+1) (or P : (t1, θ1) 7→ (t2, θ2)), from the nth collision to the
(n + 1)st collision. The Poincaré map is usually approximated by the numerical methods
based on the simulation of this map. The simulation techniques usually require too many
function evaluations which either would be very expensive or infeasible. The emulation based
method described in Subsection 1.2 can approximate this map based on few evaluations of
this map.

The emulated return map, based on Gaussian process model, for the Billiard dynamic
system introduced above is shown in Figure 7. We use 8 training points to estimate the
hyperparameters of the Gaussian process, and we then use 15 points to verify our approxi-
mation of the Poincaré return map. This approximation is shown in Figure 7. One of the
training points that their true values and their emulated values (with no uncertainty) are the
same is marked by a rectangle while the uncertainty bound around a verifying point marked
by a circle is also shown in this figure.
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Figure 7: The emulation of the first return map of the Billiard system.

6 Conclusions

We present a new method to solve the problem of emulating dynamic simulations. We
emulate the Poincaré return map and more generally the use of cross section. Our method
gives an accurate and computationally fast method to approximate return maps which is
used to study the dynamical behaviour. The need to include the time parameter by using
Poincaré return maps are largely eliminated and fast simulation of dynamical systems can
be achieved by the iteration of mappings between the cross sections.

This method is faster than the accurate-based computational methods (Tucker, 2002) due
to using too many simulation runs, and the emulated-based method presented by Conti et al
(2007) due to emulating large number of single-step functions.

The smoothness parameters of the Gussian process fitted to the data plays an important
role to improve the flexibility of the multi-output emulator and it would be desirable to
achieve this improvement by relaxing its assumption of a set of these parameters common
to all outputs; the generality of the many single-output emulators approach in this regard
is its principal benefit. Unfortunately, it seems to be very difficult to combine different
smoothness parameters for each input with some covariance structure on the output space
in such a way as to create a valid positive-definite correlation function. These issues require
more investigation and attentions.

This method is easily applicable to emulate a coupled dynamic model. In this case, we
first emulate the Poincaré return map of the first model and the evaluation of this map could
be considered as input to emulate the return map of the second model. This task is under
study.
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