Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Some comments on mapping the combined effects of slurry concentration, impact velocity and electrochemical potential on the erosion–corrosion of WC/Co–Cr coatings

Stack, M.M. and Abd El-Badia, T.M. (2008) Some comments on mapping the combined effects of slurry concentration, impact velocity and electrochemical potential on the erosion–corrosion of WC/Co–Cr coatings. Wear, 264 (9-10). pp. 826-837. ISSN 0043-1648

[img]
Preview
PDF (strathprints007449.pdf)
strathprints007449.pdf

Download (1MB) | Preview

Abstract

Materials exposed to aqueous slurry environments must not only resist the impact of solid particles and the flowing environment but also the degradation caused by electrochemical corrosion. In this study, the combined effects of slurry particle concentration and velocity on the erosion-corrosion of a WC/Co-Cr coating were assessed at a range of electrochemical potentials in a synthetic sea water solution containing sand particles and compared to the performance of a mild steel exposed to similar conditions. The erosion and corrosion contributions and their interactions were evaluated for the materials. The results indicated that the erosion-corrosion mechanism of the coating and the mild steel showed significant differences when particle velocity and concentration were increased at various potentials. For both materials, degradation mechanisms were identified and superimposed on erosion-corrosion maps. Maps indicating levels of wastage, extent of synergy between the processes and the optimum material performance were also generated as part of this study. Scanning electron microscopy was used to confirm the degradation regimes and mechanisms of material removal during the erosion-corrosion process.