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Abstract: Based upon the kinematic theorem of Koiter, the Linear Matching Method (LMM) procedure has been proved to produce very accurate upper bound shakedown limits. This paper presents a recently developed LMM lower bound procedure for shakedown analysis of structures with temperature-dependent yield stress, which is implemented into ABAQUS using the same procedure as for upper bounds. According to the Melan’s theorem, a direct algorithm has been carried out to determine the lower bound of shakedown limit using the best residual stress field calculated during the LMM upper bound procedure with displacement-based finite elements. By checking the yield condition at every integration point, the lower bound is calculated by the obtained static field at each iteration, with the upper bound given by the obtained kinematic field. A number of numerical examples confirm the applicability of this procedure and ensure that the upper and lower bounds are expected to converge to the theoretical solution after a number of iterations.
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1. Introduction

The plastic failure mechanism of a structure subject to repeated or cyclic thermal and mechanical loads is known as either ratchetting with excessive deformation (incremental plasticity) or a local low-cycle fatigue failure (alternating plasticity). Guarding against incremental plastic collapse or alternating plasticity is crucial in any design involving mechanical and thermal cyclic loads [1, 2]. However, limiting the behaviour of the structure or component to the elastic range is not an effective approach to the problem, as this leads to over-conservative design. In many applications, it is acceptable to allow limited plastic deformation to occur provided it can be shown that the structure shakes down to elastic action in the first few cycles of load. Provided the structure can be shown to be below the elastic shakedown load, ratchetting and local low-cycle fatigue failure will not occur under repeated loading.
The phenomena of shakedown have been researched and modelled extensively by plasticity theorists, materials scientists, mathematicians and engineers. However, shakedown analysis is difficult to incorporate in the design process. One approach is to simulate the elastic-plastic response of the structure for a specified load history, most commonly by incremental Finite Element Analysis. This allows investigation of any type of load cycle but also requires significant computer effort for complex engineering structures. In order to avoid the considerable numerical expense associated with a transient analysis, a relatively new cyclic analysis method, Direct Cyclic Analysis (DCA) [3], has been recently incorporated into ABAQUS [4] to evaluate the stabilized cyclic behaviour. However, both the incremental FEA and DCA do not predict a shakedown load, it simply shows whether elastic shakedown, plastic shakedown or ratchetting occurs. To calculate the Bree-like [5] shakedown limit diagram, a number of simulations at different load levels are required to establish the boundary between shakedown and non-shakedown behaviour.

 Alternatively, the shakedown limit load factor may be formulated by direct methods using static or kinematic bounding theorem. These direct methods offer the advantage that the precise load history is not required: the various loads acting on the structure are specified and the shakedown theorems applied to establish a safety domain in load space. Direct shakedown analysis is a better alternative to full step-by-step methods, particularly when only the extremes of the loading history are known. This is where shakedown theory can simplify matters a great deal. The theory uses simple material models, i.e. the material is assumed to be elastic-perfectly plastic, and the load domain containing all possible load paths is considered, thus eliminating the need to know a precise load path and material model.

With recent advances in the finite element technique and mathematical optimization theory, the simplified shakedown and limit analysis direct methods based upon the bounding shakedown theorems have been developed rapidly. Such methods include mathematical programming methods [6, 7, 8], the Generalized Local Stress Strain (GLOSS) r-node method [9], the Elastic Compensation Method (ECM) [10, 11], and the Linear Matching Method (LMM) [12, 13, 14, 15, 16]. Among these direct methods, the LMM are considered to be the method most amendable to practical engineering applications involving complex cyclic thermo-mechanical load conditions. Other direct methods either require specialist programs that are not available or supported commercially, or is still difficult to analyse complex engineering structures effectively.  

The LMM is the first and only simplified method to be successfully applied to complex cyclic problems in engineering practice. The LMM ABAQUS user subroutines [17] have been consolidated by the R5 [18] research programme of British Energy Generation Ltd (BEGL) to the commercial standard, and are now in extensive use for the design and routine assessment of power plant components. The LMM, which provides a general-purpose technique for the evaluation of shakedown and limit loads, has been developed on the basis of the previously developed non-linear programming techniques by Ponter and Carter [19], and Ponter and Engelhardt [20]. The LMM uses a linear-elastic material model with varying elastic modulus to assess a structure under non-linear behaviour. It has been demonstrated that LMM has both the advantages of programming methods and the capacity to be implemented easily within commercial finite element codes, e.g. ABAQUS.  

Based upon the kinematic theorem of Koiter [1], the LMM procedure has been proved to produce very accurate upper bound shakedown limits [12]. However, no lower bound shakedown analysis has been investigated by using the LMM.  Melan's lower bound shakedown theorem [21] states that for a given cyclic load set the structure will exhibit shakedown if a constant residual stress field can be found such that the yield condition is not violated for any combination of cyclic elastic and residual stresses. Hence the lower bound shakedown theorem requires specification or calculation of a constant residual stress field where the yield condition is not violated for any combination of cyclic elastic and residual stresses in order to define a lower bound shakedown limit. As the best residual stress field has already been calculated during the LMM upper bound procedure with displacement-based finite elements [12], it is expected to calculate the lower bounds in the same procedure by the obtained static stress fields. In the present paper, a LMM direct algorithm is investigated for the first time to determine the lower bounds of shakedown limit based upon the Melan’s theorem. By ensuring that the yield condition is not violated for the combination of cyclic elastic and residual stresses at any integration points, a lower bound shakedown analysis procedure may be established.  At each iteration, the upper bound is given by the obtained kinematic field and the lower bound is calculated by the obtained static field. Both upper and lower bounds are expected to converge to the theoretical solution after a number of iterations.
2. Numerical procedures
The material considered is isotropic, elastic-perfectly plastic and satisfies the von Mises yield condition. In order to solve practical problems with high temperature effects, the yield stress of the material is considered to be temperature-dependent. This dependence is implemented at Gauss points and related to every loading vertex of loading domain. As the yield stress 
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 depends upon the current temperature T, it is updated during the calculation with the actual load factor in an iterative way. 
Consider the following problem. A structure is subjected to a cyclic history of varying temperature 
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Corresponding to these loading histories there exists a linear elastic solution history;
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For cyclic problems the cyclic stress history, during a typical cycle 
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where 
[image: image17.wmf]ij

r

 denotes a constant residual stress field  in equilibrium with zero surface tractions on 
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 denotes the changing component of residual stress. For shakedown problems, this changing component of residual stress 
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. Hence, the cyclic stress history for shakedown problem is given by
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2.1 The Numerical Procedure for Upper Bounds
The detailed LMM numerical procedure for upper bound shakedown analysis was given by Chen and Ponter [12]. A single iteration begins with the evaluation of a varying shear modulus 
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 by matching the stress due to the linear model and the yield condition at the strain rate 
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With 
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 known, the following incompressible linear relation is proposed at each instant in the cycle for a constant residual stress field 
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The value of 
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 is then obtained by integrating (5) over the cycle, yielding a linear relationship between the compatible increment of plastic strain over the cycle 
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 This new solution now gives a new upper bound on the shakedown limit;
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where 
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  is the effective strain rate.

Generally theory [12] then shows that 
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. Repeating the process produces a sequence of upper bounds that converge to the least upper bound.  If the linear problems are solved using a finite element method then the sequence converges to the least upper bound associated with the finite element mesh.  

For a strictly convex yield condition, which includes the von Mises yield condition in deviatoric stress space, for histories of load that describe straight line paths between vertices 
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, n=1 to r, in a load space, the elastic stress similarly describe a sequence of straight line paths in stress space. The only instants when plastic strains can then occur are at the vertices of the stress history, 
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So the linear problem for a new kinematically admissible strain rate 
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and 
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The shakedown limit then becomes a limit for any history of load that lies within the polygonal path described by this load history.  In the special case when having only one load vertex, shakedown analysis reduces to limit analysis.
2.2 The Numerical Procedure for Lower Bounds
In the upper bound procedure, the solution of constant residual stress field 
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 has been calculated by integrating (5) over the cycle. On the basis of Melan's lower bound shakedown theorem, a convergent lower bound of shakedown limit can be constructed in the same procedure by maximising the lower bound load parameter 
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 nowhere violate the temperature-dependent yield condition. Hence, as the above upper bound iterative process provides a sequence of residual stress fields it is possible to evaluate a lower bound at each iteration by scaling the elastic solution so that 
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 everywhere satisfies yield. The lower bound of shakedown load multiplier can be written as:
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For the lower bound shakedown analysis, the most challenging task is to construct an optimal candidate residual stress field, which satisfies both the static equilibrium condition and the static boundary condition. Within the LMM framework, the candidate residual stress field can be easily obtained using the same strategy devised by Ponter and Engelhardt [20], which was implemented into ABAQUS through user subroutines. The lower bound of shakedown limit is then searched and the yield condition (11b) is satisfied exactly for all points xi in V and for all load vertices. At the converged state the stress history 
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 is at or less than yield at every Gauss point in the finite element mesh.  
2.3 Implementation of Numerical Procedures into ABAQUS
A very significant advantage of the method comes from the ability to use standard commercial finite element codes which have the facility to allow the user to define the material behaviour. This has been done in the code ABAQUS with user subroutine UMAT. Essentially, ABAQUS carries out a conventional step by step analysis and, through the use of user routine, each increment is reinterpreted in terms of an iteration of the method.

The load parameter operates on both the load and temperature history and the history of loading is incorporated into the method via linear elastic solutions. The continuum solution solved at each iteration yields the residual stress field in equilibrium with a zero load. This new procedure provides greater flexibility in terms of types of load history and the ease of implementation in finite element codes.

At each increment, user routine UMAT allow a dynamic prescription of the Jacobian which defines the relationship between increments of stress and strain. The implementation involves carrying through a standard load history calculation for the body, but setting up the calculation sequence and Jacobian values so that each incremental solution provides the data for an iteration in the iterative process. Volume integral options are used to evaluate the upper bound on the shakedown limit which is then provided to the user routines for the evaluation of the next iteration. In this way an exact implementation of the process may be achieved. The only source of error arises from the fact that ABAQUS uses Gaussian integration which is exact, for each element type, for a constant Jacobian within each element. 

The iteration step in ABAQUS is achieved by user subroutine UMAT and URDFIL shown as follows:

Step 1: For iteration number k=1, let 
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Step 2: For the ( k+1) iteration we define: 
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Then we can obtain 
[image: image64.wmf]1

]

[

+

k

J

, the Jacobian that relates increments of stress and strain in UMAT, from the calculated values of
[image: image65.wmf]1

+

k

m

. In order to satisfy the plastic incompressibility condition, the Poisson’s ratio must approach 0.5.

We define 
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The constant residual stress then can be calculated by
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So the strain rate associated with n vertices of the load history is
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where 
[image: image69.wmf][

]

1

+

k

n

C

is the stiffness matrix derived from 
[image: image70.wmf]1

+

k

n

m

.

And further we can calculate the effective strain increments 
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 for each Gauss integration point in the structure.

Step 3a: Upper bound on shakedown limit
From the energy output file of ABAQUS, the volume integration 
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 is determined.

Step 3b: Lower bound on shakedown limit

Searching the lower bound 
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 at (k+1) iteration by checking the yield condition (11b) for all Gaussian integration points in V and for all load vertices, i.e. 
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is the von Mises effective stress.
Unlike the upper bound procedure, which always produces the monotonically reduced load parameter, the lower bound on shakedown limit is not guaranteed to monotonically increase to its converged value. The local integration error on the stress solutions will slightly affect the lower bound shakedown limit. In order to produce a smoothly iterative lower bound at (k+1) iteration, the maximum of the lower bounds on shakedown limit at last and current iterations is adopted as the final best lower bound, i.e. 
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3. Numerical applications 

3.1 3-D holed plate subjected to both mechanical and thermal loads
The geometry of the structure and its finite element mesh are shown in Fig.1 posed as a three dimensional problem. The 20-node solid isoparametric elements with reduced integration are adopted. The ratio between the diameter D of the hole and the length L of the plate is 0.2 and the ratio of the depth of the plate to the length L of the plate is 0.05. The yield stress of material
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The holed plate is subjected to a temperature difference 
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 between the edge of the hole and the edge of the plate and uniaxial tension 
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where a is the radius of the hole and r is the distance to the centre of hole. Equation (18) gives a simple approximation to the temperature field corresponding to 
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A contour of the elastic thermal stress field (Fig. 3a) is calculated for the reference thermal stress, where 
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 is also computed for the reference mechanical stress, which is shown in Fig.3b.
The converged values of both upper and lower bounds shakedown limits are shown in Fig. 4 as an interaction diagram, composed of the limit for differing ratios of varying thermal load and constant mechanical load. The limit divides into two regions and corresponding to AB or A(B(, a reverse plasticity limit and BC or B(C, a ratchet limit. When the applied load is beyond the reverse plasticity limit AB/ A(B(, shakedown does not occur and the permanent strains settle into a closed cycle – a situation also known as “cyclic” or “alternating plasticity”. If the applied load is beyond the ratchet limit BC/ B(C, the permanent plastic strains go on increasing indefinitely – known as “ratchetting”. The point C corresponds to the limit load for the applied mechanical load. Significant differences can be seen between the reverse plasticity limit AB considering temperature-independent yield stress and the reverse plasticity limit A(B( adopting temperature-dependent yield stress. This explains the importance of adopting temperature-dependent yield stress when assessing a structure involving high temperature variation. When the variation of operating temperature approaches to zero or the temperature varies within a limited range, the temperature-independent yield stress may be adopted in order to simplify the calculation. In such cases, the effects of the temperature on the yield stress can be ignored.
Fig. 5 shows typical upper and lower bound sequences with convergence occurring in about 20 iterations for load point A (Fig. 4) considering temperature-independent yield stress and load point A( (Fig. 4) considering temperature-dependent yield stress. Fig. 6 gives typical upper and lower bound sequences with convergence occurring in about 70 iterations for load point B and B( (Fig. 4), a combined action of changing thermal loads and constant mechanical load. Fig. 7 presents typical upper and lower bound sequences with convergence occurring in about 70 iterations for load point C (Fig. 4), where the holed plate is subjected to constant mechanical load only and hence shakedown analysis reduces to limit analysis. It can be seen from all cases that the upper bound of shakedown limit converges much quicker than the lower bound as we use kinematically admissible finite elements, which produces better strain solutions than the stress results. It’s also worth noting that the lower bound of reverse plasticity limit (Fig. 5) converges much quicker than the lower bound of ratchet limit (Figs. 6 and 7). With the reverse plasticity mechanism (AB or A(B( in Fig. 4), the shakedown limit is reached when the maximum elastic stress range equals twice the yield stress. The discretization error from the residual stress solutions has little effect on the reverse plasticity limit.
In practice, convergence is assumed to have occurred when the following equation is satisfied for more than five consecutive iterations.
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where 
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, equals 1% in the present paper, is the desired accuracy of the calculation. When the percentage difference of upper and lower bound shakedown limits is less than 1%, we may conclude that both the upper and lower bounds converge to a common value. 

3.2 Superheater Outlet Penetration Tubeplate
In order to verify the applicability of the developed lower and upper bound LMM shakedown tool on complex component under a complex loading history, a real superheater outlet penetration tubeplate subjected to a transient thermal loading history from the out of phase oscillations is analyzed using the proposed shakedown method.
Fig. 8 gives the detailed information about the mesh arrangement. The finite element mesh consists of ABAQUS type C3D20R, twenty-node quadratic brick, reduced integration elements. A schematic of the transient thermal loading history from the out of phase oscillations is given in Fig. 9, which produces the most significant stress and stress range in the superheater outlet penetration tubeplate subjected to the current working environment. Hence, this load cycle type is selected for the shakedown analysis. Other load cycle types with a smaller elastic stress range are expected to be encompassed in terms of cyclic behaviour.

The component is made from Type 316H austenitic stainless steel throughout. In order to calculate the thermal stress, a transient heat transfer analysis has been carried out to determine the temperature history during the cycle. The temperature dependent specific heat and thermal conductivity (Table 1) are adopted in the transient thermal analysis, where the density of the material equals to 7.966 g/cm3.   In the structural analysis, the Poisson’s ratio has been taken to be a constant value of 0.29. The coefficient of thermal expansion and the Young’s modulus are considered to be temperature-dependent parameters, as shown in Table 1 and 2.  The yield stress of the material, which is given in Table 3, is also considered to be temperature dependent.

A temperature history from the out of phase oscillations has been calculated by a transient thermal analysis using temperature dependent thermal parameters.  Then this temperature history was adopted as an input to the structural analysis to calculate transient thermal elastic stress history. Ten load points from the out of phase oscillations shown in Fig. 9 were selected for the shakedown analysis. These 10 load points produced the most onerous elastic stress range during the cycle. Other load points with a smaller elastic stress are expected to be encompassed in terms of cyclic behaviour.  In order to include temperature effects on the yield stress of the material, the temperature-dependent yield stress 
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 is implemented at each Gauss point and related to every loading vertex of loading domain. In the shakedown analysis, both the unscaled temperature fields, i.e. the original transient temperature history from the out of phase oscillations, and the scaled temperature T are considered. The latter is updated at every increment during the calculation with the actual load factor in an iterative way. 

  The calculated converged values of both lower and upper bound elastic shakedown limit are plotted in Fig. 10 for the tubeplate subjected to transient temperature history from out of phase oscillations.  When the temperature dependent yield stress is calculated by the unscaled original transient temperature history, the computed lower and upper bound elastic shakedown limit multipliers by the LMM converge to 0.42 (Fig. 10). In order to apply more realistic temperature dependent yield stress, the original transient temperature history needs to be scaled at every increment during the calculation with the actual load factor in an iterative way. It can be seen that when adopting the scaled temperature history, both the lower and upper bound shakedown limit multipliers converge to a higher value of 0.52, which produces a less conservative shakedown limit. The shakedown limit multiplier of 0.52 means that the applied out of phase oscillations produce a stress range far beyond the shakedown limit. Hence either alternating (cyclic) plasticity mechanism or ratchetting occurs in the component. In this particular case, the alternating plasticity occurs due to the transient temperature history. This alternating plasticity failure mechanism can be easily identified in Fig. 11. Hence, the low cycle fatigue will occur in the local region around node 3007 due to the applied out of phase oscillations.
4. Discussions 
In both cases of holed plate and superheater outlet penetration tubeplate, stable convergence has been obtained for both lower and upper bound shakedown analyses, although for cases when a ratchetting mechanism operates more iteration steps need to be performed for lower bound analysis.  With the increase of iterative number, the obtained upper bound shakedown limit multipliers decrease gradually and the lower bound multipliers increase, and eventually both converge within 40-80 iterations to a difference between lower and upper bound solutions of less than 1%. Comparing with the lower bound procedure, the iterative process of the upper bound has faster convergence and produces more stable solutions. The discrepancy of the convergence rate of the lower bound procedure is due to different failure mechanism in the component (cyclic plasticity vs. ratchetting). 

Based upon the kinematic theorem of Koiter, the LMM procedure has been proved to produce very accurate upper bound shakedown and limit load [12]. However, upper bound methods sometimes are regarded to be inferior to lower bound methods. The previous development of LMM had ignored the lower bound but it might be worth, as standard practice, calculating both the upper and lower bound and show that they converge to a common value and that is an independent way of showing that the method has been correctly implemented.   
5. Conclusions

This paper presents a new development of the Linear Matching Method for the evaluation of both lower and upper bound shakedown limits for complex structures with temperature-dependent yield stress. Based upon the successful experience of existing LMM framework, a lower bound shakedown method has been developed in the paper and implemented into ABAQUS using the same procedure as for upper bounds. According to the Melan’s theorem, a direct algorithm has been carried out to determine the lower bound of shakedown limit using the best residual stress field calculated during the LMM upper bound procedure with displacement-based finite elements. The numerical examples of both holed plate and superheater outlet penetration tubeplate show high calculating efficiency: both upper and lower bounds converge to a common estimate of the shakedown limit after a number of iterations, which shows that the algorithm is reliable and it provides a useful tool to estimate the accuracy of the obtained solution.

The proposed linear matching method, interpreted as a non-linear programming method for which strict convergence proofs exist for upper bound procedure, uses a linear-elastic material model with varying elastic modulus to assess a structure under non-linear plastic behaviour. In such a way, the problem size is reduced to the size of linear elastic analysis, thus there exists a wide range of practical applications. The LMM has both the advantage of programming method and the capacity to be implemented easily within a commercial finite element code ABAQUS, providing a general-purpose technique for the evaluation of shakedown and limit loads.
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Figure Captions
Fig. 1 The geometry of the holed plate subjected to axial loading and fluctuating radial temperature distribution and its finite element mesh 

Fig. 2 The temperature history around the edge of the hole with two distinct extremes
Fig. 3 The contour of elastic von Mises effective stress with (a) pure thermal loads (
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Fig.4 Upper and lower bounds shakedown limit interaction curves of the holed plate subjected to a varying thermal load and a constant uniaxial tension
Fig.5 The convergence condition of iterative processes for shakedown analysis (Point A and A(, subjected to changing thermal loads only)
Fig. 6 The convergence condition of iterative processes for shakedown analysis (Point B and B(, subjected to combined action of changing thermal loads and constant mechanical load)
Fig. 7 The convergence condition of iterative processes for shakedown analysis (Point C, subjected to constant mechanical load only, shakedown analysis reduces to limit analysis)
Fig. 8 3D FE mesh of superheater outlet penetration tubeplate
Fig. 9 Schematic of the elastic thermal loading history
Fig. 10 The convergence condition of iterative processes for shakedown analysis
Fig. 11 Failure mechanism of superheater outlet penetration tubeplate with out of phase oscillations
Table 1 Variation of the coefficient of thermal expansion with temperature 
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Table 2 Variation of Young’s modulus E with temperature

	Temperature, 
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Table 3 Variation of 0.2% proof stress (MPa) with temperature
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Fig 1 The geometry of the holed plate subjected to axial loading and fluctuating radial temperature distribution and its finite element mesh
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Fig. 2 The temperature history around the edge of the hole with two distinct extremes
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Fig. 3 The contour of elastic von Mises effective stress with (a) pure thermal loads (
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Fig. 4 Upper and lower bounds shakedown limit interaction curves of the holed plate subjected to a varying thermal load and a constant uniaxial tension
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Fig. 5 The convergence condition of iterative processes for shakedown analysis

(Point A and A(, subjected to changing thermal loads only)
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Fig. 6 The convergence condition of iterative processes for shakedown analysis (Point B and B(, subjected to combined action of changing thermal loads and constant mechanical load)
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Fig. 7 The convergence condition of iterative processes for shakedown analysis (Point C, subjected to constant mechanical load only, shakedown analysis reduces to limit analysis)
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Fig. 8 3D FE mesh of superheater outlet penetration tubeplate
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Fig. 9 Schematic of the elastic thermal loading history     
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Fig. 10 The convergence condition of iterative processes for shakedown analysis     
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Fig. 11 Failure mechanism of superheater outlet penetration tubeplate with out of phase oscillations    
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