Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Analysis of iterative sub-structuring techniques for boundary element approximation of the hypersingular operator in three dimensions

Ainsworth, M. and Guo, B. (2002) Analysis of iterative sub-structuring techniques for boundary element approximation of the hypersingular operator in three dimensions. Applicable Analysis, 81 (2). pp. 241-280. ISSN 0003-6811

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The article deals with the analysis of Additive Schwarz preconditioners for the h-version of the boundary element method for the hypersingular integral equation on surfaces in three dimensions. The first preconditioner consists of decomposing into local spaces associated with the subdomain interiors, supplemented with a wirebasket space associated with the subdomain interfaces. The wirebasket correction only involves the inversion of a diagonal matrix, while the interior correction consists of inverting the sub-blocks of the stiffness matrix corresponding to the interior degrees of freedom on each subdomain. It is shown that the condition number of the preconditioned system grows at most as max K Hm1 (1 + log H/hK)2 where H is the size of the quasi-uniform subdomains and hK is the size of the elements in subdomain K. A second preconditioner is given that incorporates a coarse space associated with the subdomains. This improves the robustness of the method with respect to the number of subdomains: theoretical analysis shows that growth of the condition number of the preconditioned system is now bounded by max K (1 + log H/hK)2.