Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Nonlinear generalized minimum variance control under actuator saturation

Grimble, M.J. and Majecki, P.M. (2005) Nonlinear generalized minimum variance control under actuator saturation. In: Proceedings of the 16th IFAC World Congress Conference. Elsevier. ISBN 0-08-045108

[img]
Preview
PDF (strathprints007345.pdf)
strathprints007345.pdf

Download (298kB) | Preview

Abstract

A new Generalized Minimum Variance control law has been derived recently for the controlof nonlinear multivariable systems. In this paper we restrict our interest tosingle-input, single-output plants with input nonlinearities in the form of hard actuatorlimits. Since in real systems saturation always exists in some form, e.g. as a result ofvalve opening limits or finite power supply, this is a natural case to consider. One ofthe well-known problems associated with input saturation is the integral windupphenomenon, which occurs whenever the controller includes integral action. In this paper,we show that the classical form of the 'anti-windup' mechanism can be obtained withinthe Nonlinear GMV controller framework by a suitable selection of the design parameters.The advantage of the approach is that the anti-windup mechanism is obtained naturallyfrom the optimization problem. There is also the possibility that the technique can beextended for other specialized nonlinear compensation problems.