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Abstract— The distributed control of multi-robot systems has
been shown to have advantages over conventional single robot
systems. These include scalability, flexibility and robustness to
failures. This paper considers pattern formation and recon-
figurability in a multi-robot system using bifurcating potential

fields. It is shown how various patterns can be achieved through
a simple free parameter change. In addition the stability of the
system of robots is proven to ensure that desired behaviours
always occur.

I. INTRODUCTION

Over the past two decades distributed robot systems

have been developed as a method of solving a variety of

engineering problems [?]. Most of the research in this area

is influenced by the early work of Brooks [?] in the mid

1980’s who introduced the concept of behavioural robotics.

Although the majority of previous research had been

concerned with single robot systems it was suggested that

a significant step forward would be to draw on inspiration

from nature and utilise the idea of emergent behaviour

through decentralised control. This form of control has the

advantages of being robust, scalable and flexible and has

been applied to areas such a surveillance, exploration and

transportation [?], [?].

The purpose of this paper is to investigate the

distributed control of multi-robot pattern formation

and reconfigurability. To achieve this we consider the use

of the artificial potential field method and extend previous

research by considering bifurcation theory in order to have a

reconfigurable formation. Dynamical systems theory is used

to demonstrate mathematically the stability of the system so

that desired behaviours always occur.

Artificial potential fields were first introduced in Khatib

[?] in the area of obstacle avoidance for manipulators

and mobile robots. More recently they have been applied

successfully in the area of autonomous robot motion

planning [?], [?], as a form of distributed behavioural

control in [?] and in space applications [?], [?], [?].

The basic idea behind potential field theory is to create

a workspace where a robot is attracted towards a goal

state with a repulsive potential ensuring collide avoidance

[?]. As a multi-robot team may be required to achieve

different tasks a desirable property of the system would

be reconfigurability. In order to minimise computational

expense bifurcation theory can be used to reconfigure the

formation through a simple free parameter change.

For real, safety critical applications it is essential that

the behaviour of each robot is verified in order to ensure

that no unwanted behaviours will occur. Winfield [?]

has introduced the term ‘swarm engineering’ to highlight

the key issues that are involved in real, safety critical

applications as opposed to those based on simulation.

Through the use of dynamical systems theory this paper

aims to replace algorithm validation with mathematical

proof in order to prove that desired formations always occur.

The paper proceeds as follows. In the next section we

describe the model used and explain the artificial potential

field method and bifurcation theory. We also discuss the

linear and non-linear stability of the models developed.

Section III shows the numerical results of simulations carried

to demonstrate pattern formations and reconfigurability.

II. FORMATION MODEL

We consider a system of homogeneous autonomous robots

(1 ≤ i ≤ N ) interacting via an artificial potential function U .

It is assumed that all robots can communicate with each other

and are fully actuated. The negative gradient of the artificial

potential defines a virtual force acting on each robot so that

the dynamics of each robot can be described by Eq. 1 and

2 with mass, m, position, xi, and velocity, vi;

dxi

dt
= vi (1)

m
dvi

dt
= −∇iU

S(xi) −∇iU
R(xij) − σvi (2)

From Eq. 2 it can be seen that the virtual force experienced

by each robot is dependent upon the gradient of two different

artificial potential functions and a dissipative term, where

σ > 0 controls the amplitude of the dissipation. The first

term in Eq. 2 is defined as the steering potential, US which

will control the formation, whereas the second term in Eq.

2 is the collision avoidance pairwise repulsive potential, UR.



The repulsive potential is based on a generalized Morse

potential [?] as shown in Eq. 3;

UR
ij =

∑

j,j 6=i

Cr exp−|xij |/Lr (3)

Where Cr and Lr represent the amplitude and length-

scale of repulsive potential respectively and |xij | = |xi−xj |.

The total repulsive force on the ith robot is dependent

upon the position of all the other (N − 1) robots in the

formation. The repulsive potential is therefore used to ensure

that as the robots are steered towards the goal state they do

not collide with each other. Once all the robots have been

driven to the desired equilibrium state the repulsive potential

also ensures that they are equally spaced for symmetric

formations.

A. Artificial Potential Function Scale Separation

As noted in the previous section the force experienced by

each robot is dependent upon the gradient of two different ar-

tificial potential functions. The steering potential is a function

of position only. We now consider a supercritical pitchfork

bifurcation equation in Eq. 4, with bifurcation parameter µ
and length scale R. A detailed explanation of this steering

potential is given in section II B. The repulsive potential

noted in the previous section is given in Eq. 5;

US = −1

2
µ (X − R)

2
+

1

4
(X − R)

4
(4)

UR = Cr exp−X/Lr (5)

For illustration we consider a simple 1-dimensional

system with position coordinate X .

Defining an outer region dependent upon the steering

potential only and an inner region dependent upon the

repulsive potential only we can show that these two regions

are separated so that the robot move under the influence

of the long-range steering potential, but with short range

collisions (for Lr/R << 1) effectively creating a boundary

layer between them. This can then be used to determine the

non-linear stability of the system considering the steering

potential only.

For 1D motion of a robot of mass m we have;

m
dV

dt
= −∂UR

∂X
− ∂US

∂X
− σV (6)

So that,

mV
dV

dX
=

Cr

Lr
exp−X/Lr

+µ(X − R) − (X − R)3 − σV (7)

Scaling X such that S = X/R then;

1

R
mV

dV

dS
=

Cr

Lr
exp

−
R

Lr
S

+µR(S − 1) − R3(S − 1)3 − σV (8)

Now define ε =
Lr

R
<< 1 so that;

mV
dV

dS
=

Cr

ε
exp

−
S

ε

+R
[

µR(S − 1) − R3(S − 1)3 − σV
]

(9)

Let ε → 0 in order to consider ‘far field’ dynamics which

forms a singularly perturbed system;

lim
ε→0

1

ε
exp(−S/ε) = 0 (10)

Therefore at large separation distances the repulsive

potential vanishes and we can consider the steering potential

only when considering the stability of analysis of the system.

Conversely if we define S =
S

ε
we find that the ‘near

field’ dynamics are defined by;

mV
dV

dS
= Cr exp−S +

εR
[

µR(S − 1) − R3(S − 1)3 − σV
]

(11)

and letting ε → 0;

mV
dV

dS
= Cr exp−S (12)

Thus, at small separations the steering potential vanishes

and we can treat the collisions separate in the subsequent

stability analysis.

B. 1-Parameter Static Bifurcation

Referring back to Eq. 2 the steering potential can be based

on a supercritical pitchfork bifurcation [?] as shown in Eq.

13. The aim of this potential is to drive each robot to a goal

distance, r, from the origin in the x-y plane thus forming a

symmetric ring.

US(xi; µ, α) = −1

2
µ (ρi − r)

2
+

1

4
(ρi − r)

4
(13)

Where ρi = (x2
i + y2

i )0.5.

Depending on the sign of µ, the steering potential can have

two distinct forms. Fig. 1 shows how the potential bifurcates

from a single local minimum into two local minima when

µ = 0, while Fig. 2 shows the shape of the potential when

µ < 0 and µ > 0.
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Fig. 2. Potential functions: (i) µ < 0 and (ii) µ > 0

The equilibrium states of the potential occurs whenever

∂U/∂ρi = 0. Therefore;

∂U

∂ρi
= −µ(ρi − r) + (ρi − r)3 (14)

If µ ≤ 0 equilibrium occurs when ρi = r. If µ > 0
equilibrium occurs when ρi = r, r ± √

µ. Therefore, a

single ring will bifurcate to a double ring using µ as a

control parameter.

The stability of the potential is determined from the sign

of the second derivative, given in Eq. 15, and summarised

in Table I;

∂2U

∂ρ2
i

= −µ + 3(ρi − r)2 (15)

TABLE I

STABILITY OF EQUILIBRIUM STATES

Bifurcation Equilibrium ∂2U/∂ρ2

i Stability
parameter, µ position, ρeq

< 0 r > 0 stable minimum
> 0 r < 0 unstable maximum

r +
√

µ > 0 stable minimum
r −

√
µ > 0 stable minimum

1) Linear stability: 1-parameter static bifurcation: In or-

der to determine the linear stability of a system of robot sub-

ject to such a 1-parameter bifurcation steering potential we

perform an eigenvalue analysis on the linearized equations

of motion assuming that at large separation distances the

repulsive potential can be neglected through scale separation

as explained in section II A. The linear stability analysis will

be used to determine the local behaviour of the system by

calculating its eigenvalue spectrum. Therefore, the equations

of motion for the model are re-cast as;

(

ẋi

v̇i

)

=

(

vi

−σvi −∇iU
S(xi)

)

=

(

f(xi, vi)
g(xi, vi)

)

(16)

Let xo and vo denote fixed points with ẋi = v̇i = 0 so

that;

f(xo, vo) = 0 (17)

g(xo, vo) = 0 (18)

Thus, vo = 0 and ∇US = 0 at equilibrium. This occurs

when ρo = r if µ < 0 and ρo = r, r ± √
µ if µ > 0.

Defining δxi = xi − xo and δvi = vi − vo and Taylor

Series expanding about the fixed points to linear order the

eigenvalues of system can be found using;

(

δẋi

δv̇i

)

= J

(

δxi

δvi

)

(19)

where,

J =

( ∂
∂xi

(f(xi, vi))
∂

∂vi
(f(xi, vi))

∂
∂xi

(g(xi, vi))
∂

∂vi
(g(xi, vi))

)∣

∣

∣

∣

xo,vo

(20)

The Jacobian, J, is then a 2x2 matrix given by;

J =

(

0 1

−∂2U
∂ρ2

i

−σ

)
∣

∣

∣

∣

∣

x̃o,vo

(21)

Substituting a trial exponential solution into Eq. 19 we

find that;

(

δxi

δvi

)

=

(

δxo

δvo

)

eλt (22)

Therefore, the eigenvalues, λ, of the system are found

from det(J − λI) = 0.

As shown previously, if µ < 0 equilibrium of the system

occurs when xo = (r, 0) and vi = 0. Evaluating the Jacobian

matrix given in Eq. 21 we find that;

J =

(

0 1
µ −σ

)

(23)

The corresponding eigenvalue spectrum is therefore;

λ = 1/2(−σ ±
√

(σ2 + 4µ)) (24)

As σ > 0 and µ < 0 the eigenvalues are always

either negative real or complex with negative real part

as −σ ±
√

(σ2 + 4µ) ≯ 0. The equilibrium position can

therefore be considered as linearly stable.



If µ > 0 equilibrium of the system occurs when xo1 =
(r, 0), xo2 = (r+

√
µ, 0) and xo3 = (r−√

µ, 0) with vi = 0.

The Jacobian matrix evaluated at the three different equilib-

rium positions is given by Eq. 25, 26 and 27 respectively

as;

J1 =

(

0 1
µ −σ

)

(25)

J2 =

(

0 1
−2µ −σ

)

(26)

J3 =

(

0 1
−2µ −σ

)

(27)

The eigenvalues for J1 are;

λ = 1/2
(

−σ ±
√

(σ2 + 4µ)
)

(28)

Considering the pair of eigenvalues in Eq. 28 we can

show that −σ ±
√

(σ2 + 4µ) > 0 since, σ2 + 4µ > σ2

and therefore we always have atleast one positive real

eigenvalue. This equilibrium position is therefore always

linearly unstable.

The eigenvalues for J2 and J3 are;

λ = 1/2
(

−σ ±
√

(σ2 − 8µ)
)

(29)

Again as σ > 0 and µ > 0 the eigenvalues are always

either negative real or complex with negative real part as

−σ ±
√

(σ2 − 8µ) ≯ 0. The equilibrium positions can

therefore be considered as linearly stable.

2) Non-linear stability: 1-parameter static bifurcation:

To determine the non-linear stability of the dynamical

system we consider Lyapunov’s Second Theorem as

expressed by Kalman and Bertram[?], [?] ;

“If the rate of change of dE(x)/dt of the energy E(x) of

an isolated physical system is negative for every possible

state x, except for a single equilibrium state xe, then the

energy will continually decrease until it finally assumes its

minimum value E(xe)”

The aim of the steering potential is to drive the robot

to the desired equilibrium position that corresponds to the

minimum potential. Therefore, if Lyapunov’s method can be

used for the system, as time evolves the system will relax

into the minimum energy state.

The Lyapunov function, L, is defined as the total energy

of the system, where US(xi) is given in Eq. 13 so that for

unit mass;

L =
∑

i

(

1

2
v2

i + US(xi)

)

(30)

Where, L > 0 other than at the goal state when L = 0.

The rate of change of the Lyapunov function can be

expressed as;

dL

dt
=

(

∂L

∂xi

)

ẋi +

(

∂L

∂vi

)

v̇i (31)

Then, substituting Eq. 16 into Eq. 31 it can be seen that;

dL

dt
= −σ

∑

i

v2
i ≤ 0 (32)

From Lyapunov’s Second Theorem [?] it states that if L
is a positive definite function and L̇ is a negative definite

the system will be uniformly stable. A problem arises in the

use of superimposed artificial potential functions as L̇ ≤ 0.

This implies that L̇ could equal zero in a position other

than the goal minimum suggesting that the system may

become trapped in a local minimum. In order to ensure that

our system is asymptotically stable at the desired goal state

the LaSalle principle [?] can be used. It extends the above

constraints to state that if L(0) = L̇(0) = 0 and the set

{xi|L̇ = 0} only occurs when xi = xo, then the goal state is

asymptotically stable. Therefore, for the quadratic potential

considered in this paper the LaSalle principle is valid. As

we have a smooth well defined symmetric potential field,

equilibrium only occurs at the goal states so the local minima

problem can be avoided and the system will relax into the

desired goal position.

C. 2-parameter Static Bifurcation

An extension to the 1-parameter pitchfork bifurcation is to

consider 2-parameter bifurcations such as the so-called cusp

catastrophe given in Eq. 33. Fig. 3 shows the variation of the

equilibrium position with the two parameters, µ1 and µ2.

U(ρi; µ1, µ2) = µ1 (ρi − r)
2
+(ρi − r)

4
+µ2(ρi − r) (33)
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Fig. 3. Cusp catastrophe surface [?]

Mapping the cusp potential onto the µ1 − µ2 plane we

can see how the system behaviour changes for different

bifurcation parameters as shown in Fig. 4, which is similar

to a phase diagram for water for example. As pressure and

temperature are varied different phases can be achieved[?]

which is analogous to the different patterns we can achieve

as the bifurcation parameters are altered.
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If we set µ2 = 0 we have the usual pitchfork bifurcation

equation. However, for µ1 > 0 and all µ2 we only have one

equilibrium position. For µ1 < 0 and for all µ2 we have

either 1 or 2 equilibrium states as shown. If we hold µ1

at a constant negative value and alternate µ2 from negative

to positive we obtain a hysteresis loop alternating between

one and two equilibrium positions. We can therefore tip the

system into the upper or lower branches of the pitchfork

equation as shown in Fig. 5. Thus if the system is in the bi-

stable state, control over the position of a single minimum

state can be achieved through the variation of the parameters

in the bifurcation equation.
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Fig. 5. Cusp catastrophe: (i) µ1 < 0, µ2 = 0 (ii) µ1 < 0, µ2 > 0 (iii)
µ1 < 0, µ2 < 0

D. Rotation of the Formation

Recent work by McInnes [?] has shown how vortex

like swarming can be achieved through artificial potential

field methods. Eq. 1 and 2 are now modified to include a

dissipative orientation term as shown in Eq. 34 and 35. Eq.

36 shows the orientation term that dissipates energy whilst

aligning the velocity vectors of members of the swarm where

Co and Lo are constants representing the magnitude and

length-scale of the dissipation;

dxi

dt
= vi (34)

m
dvi

dt
= −Λi −∇iU

S(xi) −∇iU
R(xij) (35)

Λi =
∑

i6=j

Co(vij .x̂ij exp−|xij |/lo)x̂ij (36)

The emergence of vortex like formations can be seen

through the conservation of angular momentum, H;

∑

i

xi × mv̇i =
d

dt

∑

i

(xi × mvi)

=
dH

dt
= 0 (37)

It can also be shown that as time evolves the system of

robots will relax into the minimum energy, E, state where
∑

i vi · Λi = 0. The swarm therefore dissipates energy

while conserving angular momentum and so relaxes into

the rotating ring[?] where vij · x̂ij = 0.

III. NUMERICAL RESULTS

A. Static Bifurcation Formation Patterns

Fig. 6 shows the three different robot formations that

can be formed using a 1 parameter static bifurcation. The

system considers a swarm of 30 robots with unit mass and

σ = 10.
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Fig. 6. Formation patterns: (i) cluster (Cr = 1, Lr = 0.5 and µ = −4

(ii) ring (Cr = 1, Lr = 0.2, r = 3 and µ = −4) (iii) two rings (Cr = 1,
Lr = 0.5, r = 3 and µ = 1.5)

The first formation corresponds to the case when µ = −4
and r = 0. The robots are driven towards the origin with

the repulsive potential ultimately causing a uniform cluster

to form. The second formation consists of a ring with the

radius of the ring determined by the magnitude that the

steering potential has been moved along the ρi-axis (in this

case r = 3). The final formation consists of two rings with



µ = 1.5. The stable equilibrium state in the second formation

has become unstable and the system bifurcates into two rings.

B. 1-Parameter Static Bifurcation

Figures 7 shows the transition of a formation of 30 robots

in the x-y plane. As it can be seen, the system changes from

a ring to two rings to a cluster then back to a ring. This

is achieved through a simple parameter change and is one

of the advantages of using the pitchfork bifurcation equation

as a basis for the artificial potential function. Rather than

controlling each robot individually the global pattern of the

formation can be manipulated via µ.
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C. 2-Parameter Dynamic Bifurcation

Figure 8 demonstrates how a 2-parameter bifurcation can

be used to manipulate a robot formation. As can be seen if

we start in the two ring case when µ1 = −2 and µ2 = 0
and then vary µ2, therefore performing a bifurcation on the

system, we can either tip the system into a large or small ring.
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D. Rotation of the Static Bifurcation Formation

Figures 9 shows the rotation of the ring formation using

Eq. 36. The formation relaxes into to a single ring and

conserves angular momentum by rotating about its centre

of mass.
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Fig. 9. Time evolution of vortex ring

IV. CONCLUSION

We have shown that the control of a multi-robot system

can be achieved through the use of the artificial potential

function method. We have extended previous research in this

area through the use of bifurcation theory to demonstrate

that through a simple parameter change a formation of

robots can be made to alter their configuration and shown

how 1 and 2 parameter static bifurcations can be used to

this effect. An important step in real engineered systems

is to ensure that the formation can form reliably. Through

dynamical systems theory we have demonstrated the stability

of a system of robots driven to the equilibrium position to

ensure that desired behaviours always occur. Future work

will consider generalising the potential function method in

order to achieve arbitrary patterns whilst also considering

nonholonomic constraints in order to make the model more

realistic.
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