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Abstract—The distributed control of spacecraft flying in
formation has been shown to have advantages over conventional
single spacecraft systems. These include scalability, flexibility
and robustness to failures. This paper considers the real
problem of actuator saturation and shows how bound control
laws can be developed that allow pattern formation and
reconfigurability in a formation of spacecraft using bifurcating
potential fields. In addition the stability of the system is ensured
mathematically through dynamical systems theory.

I. INTRODUCTION

Recently formation flying has emerged as an enabling

technology for future space systems that allows for a variety

of new and exciting mission concepts. By distributing

the functionality of the system over several spacecraft it

has been shown that the performance can be significantly

improved in comparison with a large single spacecraft[1]. At

present there are several formation flying concepts currently

being investigated, for example, for interferometric/sparse

aperture missions. The Stellar Imager is an example of

such a mission that consists of a UV/Optical deep-space

telescope composed of approximately 30 one-meter array

elements[2]. Another example is the DARWIN mission that

will consist of 6 spacecraft equipped with optical telescopes

in formation at the Sun-Earth L2 point[3].

Scharf et al.[4] and Lawton [5] define five formation

control architectures for spacecraft formation flying;

Multiple-Input, Multiple-Output (MIMO), Virtual Structure

(VS), Leader/Follower (L/F), Cyclic and behavioral.

MIMO follows the multiple input, multiple output

methodology, considering the relative states of the

formations as a single plant[6]. The advantage of this

system is that optimality can be guaranteed, however,

the controller can become unstable with the failure of

one spacecraft[4]. The VS system is a centralised control

architecture where all spacecraft in the formation are part

of a virtual rigid structure where changes in the position

of each spacecraft are communicated with a formation

controller and the appropriate alterations are made to the

structure[7]. The system has the advantage of maintaining

a formation well during manoeuvrers[8] , however, it does

not perform well if the formation shape is time-varying and

is also susceptible to failure as it is centralised control [9].

The L/F architecture is a centralised hierarchical control

scheme where one spacecraft obtains information on

a desired trajectory and follower spacecraft track the

leader[10], [11]. The Landsat-7 and Earth Observing-1

(EO-1) satellites are examples of a real hierarchical L/F

mission and is generally considered the first mission to

demonstrate formation flying[1]. The two satellites in this

formation do not communicate with each other directly.

Instead a central controller determines Landsat-7’s position

and sends this information to EO-1 determining the future

orbits of both spacecraft[12]. The limitation of this system

is that it is also dependent upon the central controller and

is therefore susceptible to failure. In addition as the number

of spacecraft increase, the workload required to maintain

a formation discretely will increase significantly. Cyclic

controller architectures are similar to the L/F however each

spacecraft are connected in a non-hierarchical way[13].

A promising approach to overcome the limitations of the

architectures discussed above is to develop behavioral control

architectures in which all spacecraft interact producing an

emergent global behaviour. One such method is the use

of the artificial potential function method[14] that is used

throughout this paper. This autonomous distributed system

allows for agents to be driven to desired goal positions

whilst ensuring collision avoidance and can be considered

scalable, flexible and robust to individual spacecraft failures.

It has been used successfully, for example, by Reif and

Wang as a form of distributed behavioural control for

autonomous robots[15], by McQuade[16] in formation

flying and by Badaway and McInnes in autonomous

structure assembly[17]. Related approaches have been

developed by Izzo to form coherent spatial patterns in large

spacecraft swarms[18].

For real, safety critical applications it is essential that the

behaviour of the spacecraft be verified in order to ensure

that no unwanted behaviours will occur. Winfield[19] has

introduced the term ‘swarm engineering’ to highlight the key

issues that are involved in real, safety critical applications

as opposed to those based on simulation. Through the use

of dynamical systems theory this paper aims to take steps

towards replacing algorithm validation with mathematical



proof. Bifurcation methods are employed to create a flexible

system that can allow for different spacecraft configurations

to be formed through a simple parameter changes to

command the entire formation.

The paper proceeds as follows. In the next section we

describe the formation model used and explain the artifi-

cial potential field method and bifurcation theory. We then

discuss the linear and non-linear stability of the models

developed in Section III. Section Section IV shows the

numerical results of simulations carried out and also control

force experienced during simulation.

II. FORMATION MODEL

A. Model and Basic Formation Properties

We consider a swarm of homogeneous autonomous space-

craft (1 ≤ i ≤ N ) interacting via an artificial potential

function U . It is assumed that all spacecraft can communicate

with each other and are fully actuated. The negative gradient

of the artificial potential defines a virtual force acting on

each spacecraft so that the dynamics of each spacecraft can

be described by Eq. 1 and 2 with mass, m, position, xi, and

velocity, vi;
dxi

dt
= vi (1)

m
dvi

dt
= −∇iU

S(xi) −∇iU
R(xij) − σvi (2)

From Eq. 2 it can be seen that the virtual force experienced

by each spacecraft is dependent upon the gradient of two

different artificial potential functions and a dissipative term,

where σ > 0 controls the amplitude of the dissipation.

The first term in Eq. 2 is defined as the steering potential,

US which will control the formation, whereas the second

term in Eq. 2 is the collision avoidance pairwise repulsive

potential, UR.

The repulsive potential is based on a generalized Morse

potential [20] as shown in Eq. 3;

UR
ij =

∑

j,j 6=i

Cr exp−|xij |/Lr (3)

where Cr and Lr represent the amplitude and length-

scale of repulsive potential respectively and |xij | = |xi−xj |.

The total repulsive force on the ith spacecraft is dependent

upon the position of all the other (N − 1) spacecraft in

the formation. The repulsive potential is therefore used to

ensure that as the spacecraft are steered towards the goal

state they do not collide with each other. Once all the

spacecraft have been driven to the desired equilibrium state

the repulsive potential also ensures that they are equally

spaced for symmetric formations.

B. Artificial Steering Potential Function

The aim of the steering potential is to drive each

spacecraft to a desired position in phase space with the

repulsive potential ensuring collision avoidance and equally

spaced symmetric formations. We have previously shown

how this can be achieved through classical bifurcation

methods in order to create a system that is capable of

forming three different formations; ring, double ring and

cluster through a simple parameter change assuming ideal

spacecraft [21]. In order to ensure the stability of real,

mission critical systems it is important to consider actuator

saturation.

In [21] the steering potential was based on the classical

pitchfork bifurcation as shown in Eq. 4 and Fig. 1 with

xi = (ρi, zi)
T and ρi = (x2 + y2)0.5. As the gradient of

this potential is unbound as the distance ρi from the origin

increases the control force is also unbound and actuator

saturation would occur in the system.

US(xi; µ, α) = −1

2
µ (ρi − r)2

+
1

4
(ρi − r)

4
+

1

2
αz2

i (4)
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Fig. 1. Potential functions: (i) µ < 0 and (ii) µ > 0

Recently work done by Badaway and McInnes [17] de-

vised a promising approach to overcome this unbound con-

trol force through the use of a hyperbolic potential function.

This function has a smooth shape at the goal state whilst

becoming asymptotic with a constant gradient (thus bound

control force) as the distance from origin increases. Equation

5 and Fig. 2 show the hyperbolic control potential, Uh(ρi),
that can be used as the steering potential in order to achieve
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a bound control force, where the constant Ch controls the

amplitude of the function;

Uh(ρi) = Ch

[

(ρi − r)2 + 1
]0.5

(5)
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Fig. 2. Hyperbolic Potential Function (Ch = 1, r = 5)

In order to make use of the principles demonstrated

through the pitchfork bifurcation we can add an additional

exponential potential function, Ue(ρi), shown in Eq. 6 and

Fig. 3 that has amplitude Ce, range Le, and bifurcation

parameter µ;

Ue(ρi) = µCe exp−(ρi−r)2/Le (6)
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Fig. 3. Exponential potential function (Ce = 1, Le = 1, r = 5): (i)
µ > 0 (ii) µ < 0

Combining Eq. 5 and 6 together we achieve the bound

steering potential given in Eq. 7 with Fig. 4 and Fig.

5 showing the bifurcation diagram and potential of this

equation. The last term in Eq. 7 ensures that the formation

is created in the x-y plane driving the z-position coordinate

to zero.

US(xi) = Uh(ρi) + Ue(ρi)

= Ch

[

(ρi − r)2 + 1
]0.5

+ µCe exp−(ρi−r)2/Le

+Cz

[

z2
i + 1

]0.5
(7)
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h
: µ ≤ 0, Ch = 1,

Ce = 1, Le = 1, r = 5 (ii) US

h
: µ > 0, Ch = 1, Ce = 3, Le = 1,

r = 5

III. STABILITY

A. Artificial Potential Function Scale Separation

As noted in the previous section the force experienced

by each spacecraft is dependent upon the gradient of two

different artificial potential functions both of which are

dependent upon position;

US = Ch

[

(X − r)2 + 1
]0.5

+ µCe exp−(X−r)2/Le

(8)

UR = Cr exp−X/Lr (9)
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For illustration we consider a simple 1-dimensional

system with position coordinate X .

Defining an outer region dependent upon the steering

potential only and an inner region dependent upon the

repulsive potential only we can show that these two regions

are separated so that the spacecraft move under the influence

of the long-range steering potential, but with short range

collisions (for Lr/R << 1) effectively creating a boundary

layer between them. This can then be used to determine

the non-linear stability of the formation using the steering

potential only.

For 1D motion of a spacecraft of mass m we have;

m
dV

dt
= −∂UR

∂X
− ∂US

∂X
− σV (10)

so that,

mV
dV

dX
=

Cr

Lr
exp−X/Lr − Ch(X − R)

[(X − R)2 + 1]
0.5

+
2µCe

Le
(x − r) exp−(X−R)2/Le −σV

(11)

Scaling X such that S = X/R then;

1

R
mV

dV

dS
=

Cr

Lr
exp

−
R

Lr
S

+R(S − 1)

[

2µCe

Le
exp− (SR−R)2

Le

− Ch

[(SR − R)2 + 1]
0.5

]

− σV (12)

Now define ε =
Lr

R
<< 1 so that;

mV
dV

dS
=

Cr

ε
exp

−
S

ε

+R






R(S − 1)







2µCe

Le
exp

−
(SR − R)2

Le

− Ch

[(SR − R)2 + 1]0.5

)

− σV

]

(13)

Let ε → 0 in order to consider ‘far field’ dynamics which

forms a singularly perturbed system and note that;

lim
ε→0

1

ε
exp



−
S

ε





= 0 (14)

Therefore at large separation distances the repulsive

potential vanishes and we can consider the steering potential

only when considering the stability of analysis of the system.

Conversely if we define S =
S

ε
we find that the ‘near

field’ dynamics are defined by;

mV
dV

dS
= Cr exp−S

+ǫR

[

R(S − 1)

(

2µCe

Le
exp− (SR−R)2

Le

− Ch

[(SR − R)2 + 1]
0.5

)

− σV

]

(15)

and letting ε → 0;

mV
dV

dS
= Cr exp−S (16)

Thus, at small separations the steering potential vanishes

and we can treat the collisions separate in the subsequent

stability analysis.

Also if we consider a spacecraft to be moving at its

maximum speed Vm towards another spacecraft and assume

that the spacecraft needs to brake to V = 0 at S = Xmin/Lr

we have;

m

∫ 0

Vm

V dV = Cr

∫ S

∞
exp−S dS (17)

so that,

−1

2
mV 2

m = −Cr

[

exp−S
]S

∞ (18)

The minimum separation is then estimated as;

Xmin = Lr ln

(

2Cr

mV 2
m

)

(19)

Therefore, we can assure collision avoidance with the

condition that 2Cr > mV 2
m.

B. Linear Stability

In order to determine the linear stability of a system of

spacecraft subject to such a 1-parameter bifurcation steering

potential we perform an eigenvalue analysis on the linearized

equations of motion assuming that at large separation dis-

tances the repulsive potential can be neglected through scale

separation as explained in section II A. The linear stability

analysis will be used to determine the local behaviour of the

system by calculating its eigenvalue spectrum. Therefore, the

equations of motion for the model are re-cast as;

(

ẋi

v̇i

)

=

(

vi

−σvi −∇iU
S(xi)

)

=

(

f(xi, vi)
g(xi, vi)

)

(20)

Let xo and vo denote fixed points with ẋi = v̇i = 0 so

that;
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f(xo, vo) = 0 (21)

g(xo, vo) = 0 (22)

Defining δxi = xi − xo and δvi = vi − vo and Taylor

Series expanding about the fixed points to linear order the

eigenvalues of system can be found using;

(

δẋi

δv̇i

)

= J

(

δxi

δvi

)

(23)

where,

J =

( ∂
∂xi

(f(xi, vi))
∂

∂vi
(f(xi, vi))

∂
∂xi

(g(xi, vi))
∂

∂vi
(g(xi, vi))

)∣

∣

∣

∣

xo,vo

(24)

The Jacobian, J, is then a 4x4 matrix given by;

J =











0 0 1 0
0 0 0 1

−∂2U
∂ρ2

i

− ∂2U
∂ρi∂zi

−σ 0

− ∂2U
∂ρi∂zi

−∂2U
∂z2

i

0 −σ











∣

∣

∣

∣

∣

∣

∣

∣

∣

x̃o,vo

(25)

Substituting a trial exponential solution into Eq. 23 we

find that;

(

δxi

δvi

)

=

(

δxo

δvo

)

eλt (26)

Therefore, the eigenvalues, λ, of the system are found

from det(J− λI) = 0.

For µ < 0 (Ch = 1, Ce = 1, Le = 1 and r = 5)

equilibrium of Eq. 20 occurs when ρeq = 5, zeq = 0 and

veq = 0. Evaluating the Jacobian matrix given in Eq. 25 with

µ = −2, σ = 2 we find that;

J =









0 0 1 0
0 0 0 1
−5 0 −2 0
0 −1 0 −2









(27)

The corresponding eigenvalue spectrum is then;

λ = −1 ± i,−1,−1. As the eigenvalues are either

negative real or complex with negative real part the

equilibrium position can be considered linearly stable.

For µ > 0 (Ch = 1, Ce = 1, Le = 1 and r = 5)

equilibrium occurs when; ρeq1 = 5, ρeq2 = 3.61, ρeq3 =
6.39, zeq = 0 and veq = 0. The Jacobian matrix evaluated at

the three different equilibrium positions is given by Eq. 28,

29 and 29.

J1 =









0 0 1 0
0 0 0 1
3 0 −2 0
0 −1 0 −2









(28)

J2 =









0 0 1 0
0 0 0 1

−1.86 0 −2 0
0 −1 0 −2









(29)

J3 =









0 0 1 0
0 0 0 1

−1.86 0 −2 0
0 −1 0 −2









(30)

The eigenvalues for J1 are; λ = −3,−1,−1, 1. As

atleast one eigenvalue is positive the equilibrium position

in linearly unstable. The eigenvalues for J2 and J3 are;

λ = −1 ± i,−1,−1. Again as the eigenvalues are negative

real or complex with negative real part the equilibrium

positions can be considered as linearly stable.

C. Non-linear stability: 1-parameter static bifurcation

To determine the non-linear stability of the dynamical

system we consider Lyapunov’s Second Theorem as

expressed by Kalman and Bertram[22], [23] ;

“If the rate of change of dE(x)/dt of the energy E(x) of

an isolated physical system is negative for every possible

state x, except for a single equilibrium state xe, then the

energy will continually decrease until it finally assumes its

minimum value E(xe)”

The aim of the steering potential is to drive the spacecraft

to the desired equilibrium position that corresponds to the

minimum potential. Therefore, if Lyapunov’s method can be

used for the system, as time evolves the system will relax

into the minimum energy state.

Again using the scale separation, the Lyapunov function,

L, is defined as the total energy of the system, where US(xi)
is given in Eq. 4 so that for unit mass;

L =
∑

i

(

1

2
v2

i + US(xi)

)

(31)

where, L > 0 other than at the goal state when L = 0.

The rate of change of the Lyapunov function can be

expressed as;

dL

dt
=

(

∂L

∂xi

)

ẋi +

(

∂L

∂vi

)

v̇i (32)

Then, substituting Eq. 20 into Eq. 32 it can be seen that;

dL

dt
= −σ

∑

i

v2
i ≤ 0 (33)

From Lyapunov’s Second Theorem [24] it states that if L
is a positive definite function and L̇ is a negative definite

the system will be uniformly stable. A problem arises in the

use of superimposed artificial potential functions as L̇ ≤ 0.
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This implies that L̇ could equal zero in a position other than

the goal minimum suggesting that the system may become

trapped in a local minimum. In order to ensure that our

system is asymptotically stable at the desired goal state the

LaSalle principle [25] can be used. It extends the above

constraints to state that if L(0) = L̇(0) = 0 and the set

{xi|L̇ = 0} only occurs when xi = xo, then the goal state is

asymptotically stable. Therefore, for the quadratic potential

considered in this paper the LaSalle principle is valid. As

we have a smooth well defined symmetric potential field,

equilibrium only occurs at the goal states so the local minima

problem can be avoided and the system will relax into the

desired goal position.

IV. RESULTS

A. Formations

In order to test the control laws we consider a system

of 20 spacecraft with mass 10 kg, required to form the

three different formations; cluster, ring and double ring. Each

spacecraft are given random initial positions on the x-y plane

and an initial speed equal to 0.1 ms−1. During the first time

period (t= 0 − 8000 s) the system of spacecraft are driven

to a ring of diameter 50 m and then forced into a cluster

state (t= 8000 − 16000 s) with diameter equal to 30 m.

Once in this state a bifurcation is performed on the system

and two rings are formed with the outer ring corresponding

to a diameter of 30 m and an inner ring with diameter 14
m (t= 16000 − 24000 s). The results of the simulation are

given in Fig. 6 with Table I noting the value of the parameters

during each stage.

TABLE I

BOUND CONTROL FORMATION PATTERN CONSTANTS

Formation µ r Ch Ce Le Cz Cr Lr σ

Ring 0 25 0.05 - - 0.01 1 1 0.5
Cluster 0 0 0.05 - - 0.01 1 2 2

Two rings 4 11 0.1 0.1 5 0.01 1 2 5

B. Actuator Saturation

From Eq. 2 we can determine the control force acting on

each spacecraft as shown in Eq. 34.

ui = uS + uR + ud (34)

where,





uS

uR

ud



 =





−∇iU
S(xi)

−∇iU
R(xij)

−σvi



 (35)

Through the triangle inequality [26] the maximum control

force must be;

|ui| 6 |∇iU
S(xi)| + |∇iU

R(xij)| + |σvi| (36)

The maximum control force that the system is required

to produce will therefore be dependent upon the sum of the
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Fig. 6. Bound Control Pattern Transition: (i) ring (t= 8000s) (ii) cluster
(t= 16000s) (iii) double ring (t= 24000s)

maximum gradient of the steering and repulsive potentials

and the maximum speed that each spacecraft can move.

As the purpose of the new steering potential is to have

a bound control force it is important to determine the

maximum control force for the hyperbolic and exponential

potential functions in order to place a bound on the steering

potential. If we consider the hyperbolic function, the control

force, uh, is shown in Eq. 37 and Fig. 7;

uh = −∇iUh(ρi, zi)

=

[

− Ch(ρi − r)

[(ρi − r)2 + 1]
0.5 ,− Czzi

(z2
i + 1)0.5

]T

(37)

Therefore, as ρi → ∞, uh → −Ch; ρi → 0, uh → Ch
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and as zi → ∞, uz → −Cz as shown in Fig. 7.

If we now consider the exponential control force as shown

in Eq. 38;

ue = −∇iUe(ρi, zi)

=

[

2µ
Ce

Le
(ρi − r) exp−(ρi−r)2/Le , 0

]T

(38)

The maximum exponential control forces occurs when

ρi = r±
√

Le

2 giving the maximum control force, ue, equal

to ±
√

2µ exp−0.5 Ce√
Le

as shown in Fig. 8.
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Fig. 8. Exponential Control Force ( µ = 1, Ce = 1 and Le = 1)

Therefore, depending upon the constants chosen in the

equations the maximum bound control force in the ρi

direction will either be controlled through the hyperbolic

or exponential term in the steering potential equation. The

equations have to be evaluated to determine if either the

hyperbolic or exponential term dominates as shown in Fig. 9

(i) and (ii). Considering the case when µ > 0 with constants

choosen so that the hyperbolic term dominates then,

|∇iU
S(ρi)|max = Ch. If, however, the exponential term

dominates then |∇iU
S(ρi)|max can be found numerically. In

the z direction, |∇iU
S(zi)|max = Cz as shown in Fig. 7 (ii).
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Fig. 9. Steering Potential Control Force: (i) uh dominating (ii) ue
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The bound steering potential control force is then;

|uS | = |∇iU
S(xi)|max

≤
[

(

∇iU
S(ρi)max

)2
+

(

∇iU
S(zi)max

)2
]0.5

(39)

The repulsive potential is a bound force that has

a maximum value equal to CR/LR that occurs when

xij = 0. This would, however, occur when two spacecraft

are in the same position and therefore would have

collided. The realistic maximum control force would

therefore be (uR
i )max = CR/LR exp−(|xij |min/LR) where,

|xij |min = |xi − xj |min, is the minimum separation distance

between both spacecraft without colliding as shown in Fig.

10 (ii) for example.

The maximum control force is therefore;

|uR| = |∇iU
R(xij)|max =

Cr

Lr
exp−|xij |min/Lr (40)

where, |xij |min = Lr ln

(

2Cr

mV 2
m

)

and Vm can assumed

to be the initial speed of the spacecraft if the the dissipative
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Fig. 10. Repulsive potential: (i) potential function (ii) control force

constant σ is large as discussed in section II B.

The dissipative force, ud is bound by the maximum speed,

Vm. Therefore;

|ud| = |σvi|max ≤ σVm (41)

The maximum total force that the actuator will generate

is therefore;

|ui| 6 |∇iU
S(xi)| + |∇iU

R(xij)| + |σvi| (42)

If the steering potential is dominated by the hyperbolic

term, the maximum control force is;

|ui| 6 |∇iU
S(xi)| + |∇iU

R(xij)| + |σvi|

6

√

C2
h + C2

z +
Cr

Lr
exp−|xij |min/Lr +σVm (43)

If, however, the steering potential is dominated by the

exponential term, |∇iU
S(xi)| will have to be evaluated with

|∇iU
S(zi)max| = Cz , |∇iU

R(xij)| = Cr

Lr
exp−|xij |min/Lr

and |σvi| = σVm.

From the results it can be seen that the desired formations

are formed during the simulation. From section II A

we know that the minimum separation distance between

the spacecraft occurs when the spacecraft is traveling at

its maximum speed equal to Lr ln
(

2Cr

mV 2
m

)

. During the

formation of the first two stages the maximum bound

control force acting is equal to that given in Eq. 43.

Similarly in the formation of the double ring state when

the steering potential is influenced by both the hyperbolic

and exponential term, as the hyperbolic term dominates the

maximum bound control force is also given by Eq. 43. The

control force calculated from the simulation is given in Fig.

11 and summarised in Table II with a comparison to the

upper bound estimated previously.
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0.04
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|u
i| m
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 (N

)

(i)
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(ii)
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(iii)

Fig. 11. Numerical control force: (i) formation of ring (ii) formation of
cluster (iii) formation of double ring

TABLE II

ANALYTICAL AND COMPUTATION CONTROL FORCE

Formation Maximum Analytical Simulated Maximum
Control Force (N) Control Force (N)

Ring 0.15 0.09
Cluster 0.27 0.05

Two rings 0.63 0.15

From the results shown in Fig. 11 it can be seen that

the maximum control force was found to occur at the

start of simulation of each formation as at this point the

spacecraft are moving at their maximum velocity. In Fig.

11 (i) it can be seen that as each spacecraft are driven

to the equilibrium position short range repulsion occurs

as they interact agreeing well with the scale separation

explained in section II B so that the spacecraft move under

the influence of a long-range steering potential but with

short range collisions. From Table II it can also be seen that

8



the maximum simulated control force during each formation

is less than the maximum analytical bound control force. A

real system could therefore be designed in such a way that

the actuator saturation can be avoided so that the desired

formation will form.

V. CONCLUSION

We have shown that the control of spacecraft flying in

formation can be achieved through the use of the artificial

potential function method. We have extended previous re-

search in this area through the use of bifurcation theory to

demonstrate that through a simple parameter change a for-

mation of spacecraft can be made to alter their configuration.

To ensure that desired behaviours always occur the stability

of the system is proven mathematically through dynamical

systems theory. In order to overcome the real problem of

actuator saturation we have shown how a bound control force

can be achieved through a hyperbolic/exponential function

and demonstrated this for a system of 20 spacecraft of mass

10kg and maximum speed of 0.1ms−1. The control force

achieved in simulation was found to be smaller than the

analytical solution so that a real system could be designed in

such a way that the real problem of actuator saturation can

be avoided.
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