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Abstract

Accurate evaluation of damping in laterally oscillating microstructures is challenging due to

the complex flow behavior. In addition, device fabrication techniques and surface properties will

have an important effect on the flow characteristics. Although kinetic approaches such as the

direct simulation Monte Carlo (DSMC) method and directly solving the Boltzmann equation can

address these challenges, they are beyond the reach of current computer technology for large

scale simulation. As the continuum Navier-Stokes equations become invalid for nonequilibrium

flows, we take advantage of the computationally efficient lattice Boltzmann method to investigate

nonequilibrium oscillating flows. We have analyzed the effects of the Stokes number, Knudsen

number, and tangential momentum accommodation coefficient for oscillating Couette flow and

Stokes’ second problem. Our results are in excellent agreement with DSMC data for Knudsen

numbers up to Kn ∼ O(1) and show good agreement for Knudsen numbers as large as 2.5. In

addition to increasing the Stokes number, we demonstrate that increasing the Knudsen number

or decreasing the accommodation coefficient can also expedite the breakdown of symmetry for

oscillating Couette flow. This results in an earlier transition from quasi-steady to unsteady flow.

Our paper also highlights the deviation in velocity slip between Stokes’ second problem and the

confined Couette case.

PACS numbers: 47.61.-k, 47.45.-n, 05.10.-a
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I. INTRODUCTION

Oscillating microstructures are commonly used in modern technology e.g. microac-

celerometers, inertial sensors, and resonant filters [1–3]. Evaluation of the damping forces

in these miniaturized devices is difficult because of the complex flow behavior. In addition

to viscous and unsteady effects, it is necessary to consider nonequilibrium phenomena. In

this paper, we focus on understanding how nonequilibrium and gas-surface interactions will

affect the behavior of time-periodic shear-driven gas flows in oscillating microstructures.

The departure from equilibrium is characterized by the Knudsen number (Kn), defined

as the ratio of the molecular mean free path λ to the characteristic length L. In general, the

Navier-Stokes equations with no-velocity-slip and no-temperature-jump wall conditions are

only appropriate when Kn < 0.001. However, the gas flow in micro/nano-fluidic devices is

often in the slip (0.001 < Kn < 0.1) or the transition regime (0.1 < Kn < 10). The direct

simulation Monte Carlo (DSMC) method can be employed to investigate the flow physics in

such unsteady nonequilibrium microflows and important results of oscillatory flow character-

istics have been achieved [4–6]. Unfortunately, the statistical scattering and computational

requirements (memory and CPU) makes DSMC inefficient, especially for low-speed, low-Kn

flows. Direct solution of the Boltzmann equation offers an alternative kinetic approach that

can provide an accurate description of nonequilibrium flow [7–10]. However, due to the in-

herent nonlinearity, complexity of the collision integral, and the multidimensionality of the

equation, present solutions are limited to relatively simple geometries. In contrast to kinetic

methods, continuum-based models with slip boundary conditions, though simple and con-

venient, fail to predict critical flow characteristics in the Knudsen layer which extends a few

molecular mean free paths away from the wall [8, 11–16]. Within this layer, the linear con-

stitutive relationships for shear stress and heat flux, as assumed in the Navier-Stokes-Fourier

equations, are no longer valid [17].

A new computationally efficient method is required to investigate damping forces in mi-

cro/nano oscillating devices. Ideally, the method should have an accuracy that is comparable

to DSMC or direct solution of the Boltzmann equation. In this paper, we introduce such

a method - the lattice Boltzmann (LB) model - to investigate nonequilibrium oscillatory

gas flows. Due to its intrinsically kinetic nature, the LB approach has recently attracted

considerable research interest for modeling nonequilibrium gas flow [18–34]. Compared to
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FIG. 1: Schematic diagram of the oscillatory flow cases: confined Couette flow occurs between the

stationary substrate at y = 0 and the oscillating plate, located at y = L, whereas the semi-infinite

Stokes’ second problem propagates into the unbounded medium above y = L.

other kinetic methods, the LB model has a significantly lower computational cost and allows

convenient treatment of complex geometries. In addition, the lattice Boltzmann model does

not suffer from the closure and boundary condition problems associated with higher-order

continuum approaches such as Grad’s method of moments [35]. More recently, higher-order

LB models [36–38] and LB models incorporating the wall effect on the local mean free

path [16, 30, 33, 39] have captured the nonlinear behavior of the stress and heat flux in

the Knudsen layer. However, to the best of the authors’ knowledge, the lattice Boltzmann

model has not been applied to oscillatory nonequilibrium flows. Since the LB method is

second-order accurate in space and time, it belongs to the family of explicit, second-order

time-marching schemes [40, 41]. It can capture the time evolution naturally without any

additional iteration and is therefore a very effective computational method for describing

unsteady nonequilibrium flows.

In this paper, we extend the LB model by incorporating the wall effect on the local mean

free path, as discussed in previous work [16]. We then investigate unsteady nonequilibrium

Couette flow between two infinite parallel plates and compare the results with available

DSMC data. After evaluating our model’s performance, we study the dynamic behavior of

oscillating Couette flow and Stokes’ second problem, which is associated with an unbounded

gas above an oscillating plate.

4



II. NONEQUILIBRIUM LATTICE BOLTZMANN MODEL

We consider a planar Couette flow consisting of a stationary lower plate at y = 0 and

a moving upper plate at y = L, with both plates maintained at the same temperature T .

The upper plate oscillates harmonically in the lateral direction with velocity u = uw sin(ωt),

as illustrated in Fig. (1), where ω is the oscillatory frequency and uw is the velocity

amplitude of the oscillating plate. The oscillatory flow can be characterized by the Stokes’

number β which represents the balance between the unsteady and viscous effects, and can

be defined by

β =

√

ωL2

ν0
, (1)

where ν0 is the kinematic viscosity of the gas.

The evolution equation for the lattice Bhatnagar-Gross-Krook (BGK) model is given by

[42]:
∂fk

∂t
+ eki

∂fk

∂xi
= −fk − f eq

k

φ
, (2)

where fk is the velocity distribution function, f eq
k is the distribution function at equilibrium,

eki is the lattice velocity, and φ is the relaxation time. After discretizing Eq. (2), we obtain

fk(x + ekδt, t + δt) − fk(x, t) = −1

τ
[fk(x, t) − f eq

k (x, t)], (3)

where τ = φ/δt is the nondimensional relaxation time and δt is the time step.

For a two-dimensional, thirteen-velocity lattice model (D2Q13) [39], the equilibrium dis-

tribution function can be expressed as:

f eq
k = ρωk

[

1 +
ekiui

c2
s

+
(ekiui)

2

2c4
s

− uiui

2c2
s

+
(ekiui)

3

2c6
s

− 3(ekiui)(uiui)

2c4
s

]

, (4)

ω0 =
3

8
; ωk =

1

12
, k = 1 − 4 ; ωk =

1

16
, k = 5 − 8 ; ωk =

1

96
, k = 9 − 12,

where cs is the sound speed of the lattice fluid, ρ is the density, and ui is the macroscopic

velocity. The sound speed is given by c2
s = c2/2 where c =

√
2RT and R is the gas constant.

The lattice velocities, ek, are given by

e0 = 0 ,

ek =

[

cos

(

(k − 1)π

2

)

, sin

(

(k − 1)π

2

)]

c , k = 1 − 4,

ek =

[

cos

(

(k − 5)π

2
+

π

4

)

, sin

(

(k − 5)π

2
+

π

4

)]√
2 c , k = 5 − 8, (5)
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ek =

[

cos

(

(k − 1)π

2

)

, sin

(

(k − 1)π

2

)]

2c , k = 9 − 12.

In the absence of wall effects, we can establish a relationship between the mean

free path and the relaxation time based on kinetic theory, i.e. λ0 = (τ − 1
2
)δy

√

8
π

cs

c

[30]. Therefore, for a D2Q13 lattice BGK model, the local relaxation time can

be determined by introducing the local mean free path which takes into account

the effect of the wall:

τ =
λ

λ0

√

π

8

c

cs
Kn0NL +

1

2
, (6)

where NL = L/δy is the number of lattices over the characteristic length, δy is the lattice

spacing, and Kn0 is the Knudsen number based on the mean free path λ0 evaluated from

λ0 = (µ0/p)
√

πRT/2, where p is the pressure and µ0 is the dynamic viscosity. Molecular

gas-wall interactions are important in rarefied flows and geometrical effects on the spatial

variation of the local mean free path need to be taken into account [43, 44]. By considering

the molecular interactions close to the wall, we have established a relationship between the

local mean free path λ and the macroscopic property-based mean free path λ0. If we consider

an ideal gas bounded by two parallel plates at y = 0 and y = L, the local mean free path of

the molecules at a distance y (0 < y < L) from the lower plate can be calculated as follows

[16]:

λ(y) = λ0[1 + (ξ − 1)exp(−ξ) − ξ2
∫ ∞

ξ
t−1exp(−t) dt], (7)

where ξ = y/λ0 for those molecules moving towards y = 0 and ξ = (L − y)/λ0 for those

moving towards y = L. Since a molecule can move towards the two walls with equal

probability, the local mean free path of all molecules in the flow domain can be determined

by averaging these two parts. For y = 0 or y = L, we have ξ = L/λ0.

To capture the slip velocity at the wall, the Maxwellian kinetic boundary condition ac-

counting for the tangential momentum accommodation coefficient is employed [26, 45]. The

unknown reflected distribution function fk on the wall can be determined from the incident

distribution function fk′ as follows:

fk(x, t + δt) = (1 − α)fk′(x, t + δt)|(ek′ − uwall) · n|

+ α

∑

(ei−uwall)·n<0

|(ei − uwall) · n|fi(x, t + δt)

∑

(ej−uwall)·n>0

|(ej − uwall) · n|f eq
j (x, ρwall,uwall)

f eq
k (x, ρwall,uwall),(8)
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where uwall and ρwall are the velocity and density at the wall, respectively, and n is the unit

normal. The tangential momentum accommodation coefficient, α, represents the fraction

of impinging molecules absorbed and re-emitted diffusely, while (1 − α) is the fraction of

molecules reflected specularly from the surface. For fully diffuse reflection at the wall, α = 1.

In the simulations, the oscillation frequency ω is calculated from ω = 2π/(Tpδt), where

Tp represents the period of the imposed oscillatory velocity normalized by δt. The local

kinematic viscosity in the D2Q13 lattice BGK model was calculated from ν = (τ − 0.5)c2
sδt.

III. OSCILLATORY COUETTE FLOW

A. Dynamic velocity profiles

Figures 2-4 compare the dynamic velocity profiles from the present lattice Boltzmann

model (LBM) against the DSMC data presented by Hadjiconstantinou [8]. The results show

that inertial effects become significant as the oscillation frequency increases. It can be seen

that both the bulk flow velocity and the velocity in the Knudsen layer are in excellent agree-

ment with DSMC results indicating that the proposed LB model can successfully capture

the characteristics of the Knudsen layer in unsteady flows. Figure 5 illustrates the effect of

the tangential momentum accommodation coefficient on the dynamic velocity profiles and

indicates that the slip velocity increases as the value of α decreases.

B. Velocity history

Figure 6 shows the history of the streamwise velocity at various locations between the

stationary and oscillating plates for Kn0 = 1.0. In Fig. 6(a), which shows a typical

quasi-steady flow behavior, it can be seen that the velocity amplitude increases

as y/L → 1 i.e. as we approach the oscillating plate. However, at higher Stokes

numbers, as shown in Fig. 6(b), the time history exhibits a more complex

pattern because the velocity amplitude decays rapidly away from the moving

wall. In contrast, the phase lag can be seen to grow as we move further away from

the oscillating wall. The results illustrate that the phase difference between the velocity

signal imposed on the oscillating wall and the signal felt at the stationary wall increases with

Stokes number β. However, as shown in Fig. 7, increasing the Knudsen number has only a
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FIG. 2: Dynamic velocity profiles for Kn0 = 0.1 and β = 4.0 where the symbols represent the

DSMC data obtained from Hadjiconstantinou [8]. The stationary and oscillating plates are located

at y/L=0 and 1 repectively.

0.0 0.2 0.4 0.6 0.8 1.0
-0.8

-0.4

0.0

0.4

0.8
Kn0=0.2, =2.0

 LBM
 DSMC

 

 

u/
u w

y/L

t=

t=

t=

t= /2

FIG. 3: Dynamic velocity profiles for Kn0 = 0.2 and β = 2.0 where the symbols represent the

DSMC data obtained from Hadjiconstantinou [8].

small effect on the phase difference between the oscillating and stationary walls. Comparing

the results from our LB model against the DSMC data presented by Bahukudumbi et al. [13]

shows that the proposed lattice Boltzmann model provides satisfactory results for Knudsen

numbers as large as 2.5.

Figure 8 presents the velocity distribution for a Stokes number of β = 5. It can be seen

that the phase difference between the velocity signals at the various locations becomes signif-

icant demonstrating the importance of inertial effects as the oscillation frequency increases.
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FIG. 4: Dynamic velocity profiles for Kn0 = 0.4 and β = 1.0 where the symbols represent the

DSMC data obtained from Hadjiconstantinou [8].
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FIG. 5: Dynamic velocity profiles for Kn0 = 0.1 and β = 4.0 showing the effect of the tangential

momentum accommodation coefficient.

We also compare our results with the analytical slip-flow solution of the Navier-Stokes equa-

tions given by Park et al. [15]. The deviations at the walls are largely due to the fact that the

analytical solution does not take account of the Knudsen layers. We have also investigated

the effect of the tangential momentum accommodation coefficient for high Stokes number

flows. Figure 9 shows the streamwise velocity history for β = 5.0 and Kn0 = 0.1 for values

of α ranging from 0.5 to 1.0. As the accommodation coefficient decreases, the phase lag

increases in comparison to the no-slip continuum solution.
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FIG. 6: Streamwise velocity history for Kn0 = 1.0, and (a) β=0.25; (b) β=2.5, where the stationary

and oscillating plates are located at y/L=0 and 1 respectively.
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FIG. 7: Streamwise velocity history for β = 0.25 and (a) Kn0=0.1; (b) Kn0=2.5. The symbols

represent the DSMC data at two locations with y/L=0.01 and 0.99 given by Bahukudumbi et al.

[13].

C. Velocity amplitude

Figures 10 and 11 show the velocity amplitude between the two surfaces normalized by uw.

The LB results are again in very good agreement with the DSMC data given by Park et al.

[15]. Although the cases for β ≤ 0.25 are usually classified as quasi-steady flow [15], Figure 10

indicates that the velocity profile can lose its symmetry if the Knudsen number is sufficiently

large. When the Knudsen number increases, the gas becomes more dilute so that
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represent the analytical solution of the Navier-Stokes equations given by Park et al. [15]: ◦ :

y/L = 0.5; △ : y/L = 0.6; ▽ : y/L = 0.7; ⋄ : y/L = 0.8; × : y/L = 0.9; ⊕ : y/L = 1.0
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FIG. 9: Streamwise velocity history for different accommodation coefficients at Kn0 = 0.1, β = 5.0,

and (a) y/L = 0.99; (b) y/L = 0.01. The results for a continuum flow with Kn = 0 is presented

for comparison.

the frequency of collisions between the gas molecules is reduced. It therefore

takes longer to transfer momentum from the oscillating plate which leads to an

earlier transition from a quasi-steady state to an unsteady flow condition. Figure

11 shows the effect of increasing the Stokes number when the Knudsen number is fixed.
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For β = 0.25 and 1.0, the velocity amplitudes are very similar. However, for higher Stokes

numbers, the deviation from the symmetrical velocity profile becomes significant and the slip

velocity at the stationary wall is much smaller than that at the oscillating wall. In addition,

as the Stokes number is increased, the slip velocity at the stationary wall decreases whilst

the slip at the oscillating wall increases. Figure 11 shows that when the Stokes number is

large, the flow is confined to a near-wall region or bounded Stokes’ layer [15].

Figure 12 shows the effect of the Knudsen number on the velocity amplitude at moderate

and high Stokes numbers. The quasi-steady flow description is still appropriate for the case

of β = 1.0 and Kn = 0.1 because the velocity amplitude remains symmetrical. However,

quasi-steady flow breaks down when the Knudsen number reaches 0.5, as can be clearly seen

in Fig. 12(a). Although the magnitude of the slip velocity at the oscillating plate increases

with Knudsen number, a more complicated behavior is exhibited at the stationary plate. The

results also show that the transition from quasi-steady flow to unsteady flow occurs at modest

Stokes number for highly nonequilibrium flows. From Figs. 11 and 12, it can be seen that

the Stokes number rather than Knudsen number is important in determining the thickness

of the bounded Stokes layer. Conversely, the Knudsen number is more important than the

Stokes number in determining the velocity slip at the oscillating wall. We have also examined

the effect of the accommodation coefficient α and have found that the flow experiences an

earlier transition from quasi-steady to unsteady conditions as the accommodation coefficient

is decreased. Even at small Stokes numbers, reducing the accommodation coefficient can

expedite the breakdown of the symmetrical velocity distribution. When the tangential

momentum accommodation coefficient decreases, the amount of slip at the plates

will increase, as illustrated in Fig. 9. In addition, the phase lag will increase and

the gas becomes less responsive to the plate oscillation, effectively increasing the

inertia of the system.

D. Shear stress

In contrast to Navier-Stokes approaches, it is convenient to evaluate the shear stress inde-

pendently of the velocity fields in lattice Boltzmann models. This is because the LB method

is kinetic in nature and the shear stress can be computed directly from the distribution

function. Figure 13 shows the predicted shear stress on the oscillating wall, normalized by
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FIG. 10: Streamwise velocity amplitude at various Knudsen numbers for β = 0.25. The symbols

represent the DSMC data given by Park et al. [15].
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FIG. 11: Streamwise velocity amplitude at various Stokes numbers for Kn0 = 0.1. The symbols

represent the DSMC data given by Park et al. [15].

the continuum limit for steady planar Couette flow, τw = µ0uw/L. As the Stokes number

increases, the wall shear stress increases especially at low Knudsen numbers. Good agree-

ment is observed between our LB results and the DSMC data given by Hadjiconstantinou

[8] for Knudsen numbers as large as 2.5.
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FIG. 12: Streamwise velocity amplitude at various Knudsen numbers: (a) β = 1.0. (b) β = 2.5.
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FIG. 13: Shear stress on the oscillating plate as a function of Knudsen number. The symbols

represent the DSMC data given by Hadjiconstantinou [8].

IV. COMPARISON OF OSCILLATING COUETTE FLOW AND STOKES’ SEC-

OND PROBLEM

In practical applications involving laterally oscillating plates, not only should the damping

force between the two parallel plates be accounted for but also the damping due to the

ambient gas above the oscillating plate. It is informative, therefore, to compare the dynamic

behavior of confined Couette flow with Stokes’ second problem which considers the motion

of an unbounded gas above an oscillating flat plate.

To simulate Stokes’ second problem, we applied a stationary wall condition at

14



y = 10L. In addition, we adopted an extrapolation scheme to obtain the unknown

distribution function at the upper boundary which was placed sufficiently far

away from the oscillating plate to have a negligible influence on the flow field.

Figure 14 shows the dynamic velocity profiles for both the confined and unconfined cases at

intervals of ωt = π/4 over half a period. The presented velocity profile above the oscillating

plate is a strongly damped oscillation of exponentially decaying amplitude. The velocity is

negligible beyond the penetration depth, which is defined as the distance above the moving

plate where the amplitude of the oscillation has decreased to one per cent of the wall velocity

uw. In Stokes’ second problem, the rarefaction is usually characterized by defining the

Knudsen number as λ0

√

ω/ν0. Figure 14 shows that the velocity profiles on both sides

of the oscillating plate are similar up to Kn0 = 0.2 but start to show differences as the

Knudsen number continues to increase. This is confirmed in Fig. 15 which shows the

velocity amplitude for both the confined and unbounded cases. It can be seen that the

slip velocity either side of the oscillating plate starts to differ when the Knudsen number

approaches Kn0 = 0.6. This can be explained by the fact that the Knudsen layers at the

stationary and oscillating plates start to overlap when the Knudsen number exceeds 0.5. In

previous studies, this Knudsen layer interference has usually been ignored.

V. CONCLUSIONS

The nonequilibrium flow characteristics in laterally oscillating structures have been in-

vestigated using an extended lattice Boltzmann model that can account for the effects of

the Knudsen layer. We first investigate oscillatory Couette flow between two infinite parallel

plates. The lattice Boltzmann model is shown to be in very good agreement with available

DSMC data for Knudsen numbers up to ∼ 2.5. Increasing the Stokes number and Knudsen

number or decreasing the tangential momentum accommodation coefficient is shown to lead

to an earlier transition from quasi-steady to unsteady flow. We then compare the dynamic

behavior of confined Couette flow with Stokes’ second problem. Our model is able to account

for the overlapping Knudsen layers in the Couette problem and can capture the deviation in

slip velocity between the confined and unbounded cases. The study demonstrates that the

lattice Boltzmann model is a very effective computational method for describing unsteady

nonequilibrium flows.
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FIG. 14: Dynamic velocity profiles for confined Couette flow and Stokes’ second problem. The

location of the oscillating plate is indicated by a vertical solid line at (a) y(ω/ν0)
1/2=4 and (b)

y(ω/ν0)
1/2=2. The stationary plate is located at y(ω/ν0)

1/2=0. Oscillatory Couette flow occurs

between the stationary and moving plates whilst Stokes’ second problem propagates away from the

oscillating plate into the unbounded region.
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