Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow

Tang, G.H. and Gu, X.J. and Barber, Robert W. and Emerson, David and Zhang, Yonghao and Reese, Jason (2008) Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 78 (2). 026706-026714. ISSN 1063-651X

[img]
Preview
PDF (strathprints007303.pdf)
strathprints007303.pdf

Download (5MB) | Preview

Abstract

Accurate evaluation of damping in laterally oscillating microstructures is challenging due to the complex flow behavior. In addition, device fabrication techniques and surface properties will have an important effect on the flow characteristics. Although kinetic approaches such as the direct simulation Monte Carlo (DSMC) method and directly solving the Boltzmann equation can address these challenges, they are beyond the reach of current computer technology for large scale simulation. As the continuum Navier-Stokes equations become invalid for nonequilibrium flows, we take advantage of the computationally efficient lattice Boltzmann method to investigate nonequilibrium oscillating flows. We have analyzed the effects of the Stokes number, Knudsen number, and tangential momentum accommodation coefficient for oscillating Couette flow and Stokes' second problem. Our results are in excellent agreement with DSMC data for Knudsen numbers up to Kn=[script O](1) and show good agreement for Knudsen numbers as large as 2.5. In addition to increasing the Stokes number, we demonstrate that increasing the Knudsen number or decreasing the accommodation coefficient can also expedite the breakdown of symmetry for oscillating Couette flow. This results in an earlier transition from quasisteady to unsteady flow. Our paper also highlights the deviation in velocity slip between Stokes' second problem and the confined Couette case.