Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The synthesis of 7-deazaguanines as potential inhibitors of guanosine triphosphate cyclohydrolase 1

Gibson, C.L. and La Rosa, S. and Ohta, K. and Boyle, P.H. and Leurquin, F. and Lemaçon, A. and Suckling, C.J. (2004) The synthesis of 7-deazaguanines as potential inhibitors of guanosine triphosphate cyclohydrolase 1. Tetrahedron, 60 (4). pp. 943-959. ISSN 0040-4020

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Variously substituted 7-deazaguanines are of interest as inhibitors of GTP cyclohydrolase I, the first enzyme in the biosynthetic pathway leading to dihydrofolate and tetrahydrobiopterin. Methods are described for the synthesis of 7-deazaguanines substituted at positions 2, 6 and 9 (purine numbering) such that a wide diversity of compounds can be prepared. These methods supplement our previous work that established routes for the synthesis of 7- and 8-substituted 7-deazaguanines. Emphasis is placed on the properties of 2-thioalkyl pyrimidines as intermediates because they provide the basis for a traceless solid-state synthesis of purines, pteridines, and their analogues. Compounds prepared have been assessed in a primary screen for their ability to inhibit GTPCH I and 8-methyldeazaguanine has been shown to be significantly more potent than any inhibitor yet described. Several compounds appeared to undergo transformation by GTPCH I; with the aid of a model reaction, their behaviour can be interpreted in the context of the mechanism of the hydrolytic phase of GTPCH I.