Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

High-resolution 3D isotropic MR imaging of mouse flank tumours obtained in vivo with solenoid RF micro-coil

Holmes, W.M. and Maclellan, S. and Condon, B. and Dufès, Christine and Evans, T.R.J. and Uchegbu, I.F. and Schätzlein, A.G. (2008) High-resolution 3D isotropic MR imaging of mouse flank tumours obtained in vivo with solenoid RF micro-coil. Physics in Medicine and Biology, 53. pp. 505-513. ISSN 0031-9155

[img]
Preview
PDF (Holmes 2008)
Holmesetal2008.pdf - Published Version

Download (622kB) | Preview

Abstract

The investigation of mouse flank tumours by magnetic resonance imaging (MRI) is limited by the achievable spatial resolution, which is generally limited by the critical problem of signal-to-noise ratio. Sensitivity was improved by using an optimized solenoid RF micro-coil, built into the animal cradle. This simple design did not require extensive RF engineering expertise to construct, yet allowed high-resolution 3D isotropic imaging at 60 × 60 × 60 μm3 for a flank tumour in vivo, revealing the heterogeneous internal structure of the tumour. It also allowed dynamic contrast enhanced (DCE) experiments and angiography (MRA) to be performed at 100 × 100 × 100 μm3 resolution. The DCE experiments provided an excellent example of the diffusive spreading of contrast agent into less vascularized tumour tissue. This work is the first step in using high-resolution 3D isotropic MR to study transport in mouse flank tumours.