Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The synthesis of some indole-containing amino acids as linkers for the construction of DNA minor groove binders

Khalaf, A.I. and Pitt, A.R. and Scobie, M. and Suckling, C.J. and Urwin, J. and Waigh, R.D. and Young, S.C. and Fishleigh, R.V. (2000) The synthesis of some indole-containing amino acids as linkers for the construction of DNA minor groove binders. International Journal of Chemical Research, 2000 (6). pp. 264-265. ISSN 0975-3699

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Molecular modelling studies showed that indole dicarboxylic acids are potential linkers for the synthesis of bis-netropsin analogues with a good fit to the minor groove of DNA. To test this hypothesis, 2-carboxyindole-6-acetic acid, indole-2,6-dicarboxylic acid, 6-(2-carboxyethyl)indole-2-carboxylic acid, 6-(2-carboxy-1-ethenyl)indole-2-carboxylic acid were prepared and coupled to 3-[1-methyl-4-(1-methyl-4-aminopyrrole-2-carboxamido)pyrrole-2-carboxamido]dimethylaminopropane. Similarly indole-2,5-dicarboxylic acid was prepared and coupled to 3-[1-methyl-4-(1-methyl-4-aminopyrrple-2-carboxamido)pyrrole-2-carboxamido]propionamidine hydrochloride. The derivatives of 26-28 showed especially strong binding to AT rich regions as shown by footprinting studies.