Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Classification using radial basis function networks with uncertain weights

Manson, G. and Pierce, S.G. and Worden, K. (2005) Classification using radial basis function networks with uncertain weights. Key Engineering Materials, 293-294. pp. 135-142. ISSN 1013-9826

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper considers the performance of radial basis function neural networks for the purpose of data classification. The methods are illustrated using a simple two class problem. Two techniques for reducing the rate of misclassifications, via the introduction of an "unable to classify" label, are presented. The first of these considers the imposition of a threshold value on the classifier outputs whilst the second considers the replacement of the crisp network weights with interval ranges. Two network training techniques are investigated and it is found that, although thresholding and uncertain weights give similar results, the level of variability of network performance is dependent upon the training approach.