Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Twin-bladed microelectro mechanical systems variable optical attenuator

Li, L. and Uttamchandani, D.G. (2006) Twin-bladed microelectro mechanical systems variable optical attenuator. Optical Review, 13 (2). pp. 93-100. ISSN 1340-6000

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The design and evaluation of a microelectro mechanical systems (MEMS) based variable optical attenuator is reported. The device contains two blades, which are each driven by a separate electrostatic comb microactuator, and move independently to form a variable slit. This device has been fabricated in silicon-on-insulator material which has been back-etched. Electro-mechanical design considerations, including factors to minimise the side instability of the comb drive, are described. Finite element modelling (FEM) of the variable optical attenuator (VOA) is backed up by theoretical results, and the results from the theoretical work verify the findings from the FEM. Optical modelling of the VOA using near field diffraction theory is also reported. Experimentally, the device was driven from 0-34V DC to measure its static characteristics. For dynamic characterisation, the device was operated from 0-28 V AC and its fundamental resonant frequency was measured to be 3 kHz. Optical measurements including wavelength dependent attenuation are also presented.

Item type: Article
ID code: 7156
Keywords: optical method, experimental study, finite element method, microactuators, microelectromechanical device, optical attenuator, electromagnetic wave diffraction, Electrical engineering. Electronics Nuclear engineering, Atomic and Molecular Physics, and Optics
Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
Department: Faculty of Engineering > Electronic and Electrical Engineering
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 14 Oct 2008
    Last modified: 04 Sep 2014 17:09
    URI: http://strathprints.strath.ac.uk/id/eprint/7156

    Actions (login required)

    View Item