Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Digital distance protection for composite circuit applications

Moore, P.J. and Bo, Z. and Aggarwal, R. (2005) Digital distance protection for composite circuit applications. IEE Proceedings Generation Transmission and Distribution, 152 (2). pp. 283-290. ISSN 1350-2360

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An approach to numeric distance relaying is proposed that is suitable for EHV composite overhead line and underground cable circuit applications. The proposed relay incorporates a circuit shunt capacitance in addition to a series resistance and inductance. By modelling the protected circuit as a series of RLC sections within the relaying algorithm, greater reach point accuracy can be achieved. Unlike conventional distance relays that sense the fault loop impedance and compare this against a reach point value, the proposed relay uses a directional element that is based on the calculated reach point voltage and current values. Results are presented based on a composite 500 kV application study comprising two overhead line sections and two cable sections. Comparisons with conventional numeric distance relay algorithms show that overreach is virtually eliminated in the proposed relay. The simulation results have been verified with an implementation of the relay based on modern digital signal processing hardware.