Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

hp-Approximation theory for BDFM/RT finite elements and applications

Ainsworth, M. and Pinchedez, K. (2003) hp-Approximation theory for BDFM/RT finite elements and applications. SIAM Journal on Numerical Analysis, 40 (6). pp. 2047-2068. ISSN 0036-1429

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We study approximation properties of hp-finite element subspaces of $oldsymbol{mathsf{H}}(mathop{{ m div}},Omega)$ and $oldsymbol{mathsf{H}}(mathop{{ m rot}},Omega)$ on a polygonal domain $Omega$ using Brezzi--Douglas--Fortin--Marini (BDFM) or Raviart--Thomas (RT) elements. Approximation theoretic results are derived for the hp-version finite element method on non-quasi-uniform meshes of quadrilateral elements with hanging nodes for functions belonging to weighted Sobolev spaces ${oldsymbol{mathsf{H}}}_{omega}^{s,ell}(Omega)$ and the countably normed spaces $pmb{{cal B}}_{w}^{ell}(Omega)$. These results culminate in a proof of the characteristic exponential convergence property of the hp-version finite element method on suitably designed meshes under similar conditions needed for the analysis of the ${oldsymbol{mathsf{H}}}^{1}(Omega)$ case. By way of illustration, exponential convergence rates are deduced for mixed hp-approximation of flow in porous media.