Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

hp-Approximation theory for BDFM/RT finite elements and applications

Ainsworth, M. and Pinchedez, K. (2003) hp-Approximation theory for BDFM/RT finite elements and applications. SIAM Journal on Numerical Analysis, 40 (6). pp. 2047-2068. ISSN 0036-1429

Full text not available in this repository. (Request a copy from the Strathclyde author)


We study approximation properties of hp-finite element subspaces of $oldsymbol{mathsf{H}}(mathop{{ m div}},Omega)$ and $oldsymbol{mathsf{H}}(mathop{{ m rot}},Omega)$ on a polygonal domain $Omega$ using Brezzi--Douglas--Fortin--Marini (BDFM) or Raviart--Thomas (RT) elements. Approximation theoretic results are derived for the hp-version finite element method on non-quasi-uniform meshes of quadrilateral elements with hanging nodes for functions belonging to weighted Sobolev spaces ${oldsymbol{mathsf{H}}}_{omega}^{s,ell}(Omega)$ and the countably normed spaces $pmb{{cal B}}_{w}^{ell}(Omega)$. These results culminate in a proof of the characteristic exponential convergence property of the hp-version finite element method on suitably designed meshes under similar conditions needed for the analysis of the ${oldsymbol{mathsf{H}}}^{1}(Omega)$ case. By way of illustration, exponential convergence rates are deduced for mixed hp-approximation of flow in porous media.