Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Scalable electrothermal MEMS actuator for optical fibre alignment

Syms, R. and Zou, H. and Yao, J. and Uttamchandani, D.G. and Stagg, J. (2004) Scalable electrothermal MEMS actuator for optical fibre alignment. Journal of Micromechanics and Microengineering, 14 (12). pp. 1633-1639. ISSN 0960-1317

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A new geometry of high-force electrothermal actuator is demonstrated using microelectromechanical systems technology. The actuator consists of two sets of inclined, parallel, suspended beams, which are tethered at one end and linked together at the other. The first set is divided into two halves, which are connected in series and heated electrically. The second set acts as a tether for the first, so that differential thermal expansion gives rise to a lateral deflection. The design can be scaled easily to increase the actuation force, which is sufficient to deflect a cantilevered optical fibre. A bi-directional fibre alignment device is formed from two opposed actuators, which are designed to grip the fibre, and a set of fixed mounting features. Prototype devices are demonstrated by deep reactive ion etching of bonded silicon-on-insulator, and in-plane alignment of single-mode fibre is demonstrated.