Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Variable selection for partial least squares calibration of NIR data from orthogonally designed experiments

Setarehdan, S. and Soraghan, J.J. and Littlejohn, D. and Sadler, D. (2002) Variable selection for partial least squares calibration of NIR data from orthogonally designed experiments. Applied Spectroscopy, 56 (3). pp. 337-345. ISSN 0003-7028

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A method of variable selection for use with orthogonally designed calibration data sets, such as factorial or partial factorial designs, is described. The procedure works by assessing the degree of correlation between each X variable (e.g., wavelength) and each Y variable (concentration, composition, etc.). The X variables are then ranked according to the degree of correlation. A forward selection method is then used to determine the optimum number of high-ranked variables to be used for calibration purposes. The algorithm was tested on a data set obtained by near infrared (NIR) spectrometry. Significant improvements in the prediction accuracy of partial least-squares (PLS) models were observed for two of the components in the chemical mixture by using the selected wavelengths in the NIR spectra rather than all the variables in the original spectra or the variables obtained using a spectral-variance-based variable selection method.