Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Performance assessment and benchmarking LQG predictive optimal controllers for discrete

Grimble, M.J. (2003) Performance assessment and benchmarking LQG predictive optimal controllers for discrete. Transactions of the Institute of Measurement and Control, 25 (3). pp. 239-264. ISSN 0142-3312

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The performance assessment and benchmarking of discrete-time multivariable LQG predictive optimal control problems is considered for systems represented in state equation form. The class of predictive controllers represents the most popular multivariable design methods for the process industries. It is claimed that these methods provide improved performance but the question addressed is how this performance should be judged. A multistep LQGPC optimal control cost-function is minimized where future set-point or reference knowledge is assumed. The predictive control cost-function includes the future tracking error and control signal components. The state-equation system description can be written in terms of these future inputs, so that the model includes the outputs for time t and a vector of future outputs. The benchmark cost values are obtained from the solution of appropriate Riccati and Lyapunov equations. The results throw new light on the relationship between predictive, LQ and LQG control laws and more importantly into the way the performance of predictive controls should be assessed.