Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Risk analysis approach for generation adequacy assessment in a deregulated environment

Lo, K.L. and Hashim, A.H. (2004) Risk analysis approach for generation adequacy assessment in a deregulated environment. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 23 (2). pp. 467-483. ISSN 0332-1649

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A system operator (SO) of a transmission network consistently aims to minimise operating costs whilst still maintaining a certain degree of system adequacy. One of the ways to achieve this is by minimising the level of spinning reserve (SR) in the system. In order to do so, the level of SR must be analysed. This study looks at quantifying the risk of inadequacy when the SR is varied. A study was done for a period of 24?h with 30?m intervals to determine the risk level at each period. The number of generators despatched, system power margin and the system sell price was all taken into account. Risk was then computed by factoring the probability of generation inadequacy and the cost of purchasing the imbalance from the balancing market.