Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Hierarchical micro-genetic algorithm paradigm for automatic optimal weight selection in H∞ loop-shaping robust flexible AC transmission system damping control design

Lo, K.L. and Khan, L. (2004) Hierarchical micro-genetic algorithm paradigm for automatic optimal weight selection in H∞ loop-shaping robust flexible AC transmission system damping control design. IEE Proceedings Generation Transmission and Distribution, 151 (1). pp. 109-118. ISSN 1350-2360

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A hierarchical-micro-genetic-algorithm-(H-μGA)-based strategy is presented for suitable weight selection in H∞ loop-shaping robust damping control of flexible AC transmission system (FACTS) devices via normalised coprime factorisation. In H∞ robust control design, the selection of a weighting function is an arduous and time consuming task. To muddle through this dilemma, an HGA in liaison with a micro-GA is employed to simultaneously select an appropriate structure and parameters of the weighting function in order to achieve a desired performance without the usual trial and error practice. To evaluate the effectiveness of the proposed technique, H∞ robust damping control systems for SVC and TCSC are investigated and compared with the classical H∞ loop- shaping control systems design. The performance and robustness of the proposed FACTS damping controls are validated through small signal and large signal simulations in a multi-machine power system.