Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Hierarchical micro-genetic algorithm paradigm for automatic optimal weight selection in H∞ loop-shaping robust flexible AC transmission system damping control design

Lo, K.L. and Khan, L. (2004) Hierarchical micro-genetic algorithm paradigm for automatic optimal weight selection in H∞ loop-shaping robust flexible AC transmission system damping control design. IEE Proceedings Generation Transmission and Distribution, 151 (1). pp. 109-118. ISSN 1350-2360

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A hierarchical-micro-genetic-algorithm-(H-μGA)-based strategy is presented for suitable weight selection in H∞ loop-shaping robust damping control of flexible AC transmission system (FACTS) devices via normalised coprime factorisation. In H∞ robust control design, the selection of a weighting function is an arduous and time consuming task. To muddle through this dilemma, an HGA in liaison with a micro-GA is employed to simultaneously select an appropriate structure and parameters of the weighting function in order to achieve a desired performance without the usual trial and error practice. To evaluate the effectiveness of the proposed technique, H∞ robust damping control systems for SVC and TCSC are investigated and compared with the classical H∞ loop- shaping control systems design. The performance and robustness of the proposed FACTS damping controls are validated through small signal and large signal simulations in a multi-machine power system.