Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Risk assessment due to local demand forecast uncertainty in the competitive supply industry

Lo, K.L. and Wu, Y. (2003) Risk assessment due to local demand forecast uncertainty in the competitive supply industry. IEE Proceedings Generation Transmission and Distribution, 150 (5). pp. 573-582. ISSN 1350-2360

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A risk assessment on local demand forecast uncertainty is presented. The aim is to highlight high-risk periods over different lengths of time and daily value-at-risk (VAR) due to load forecast errors. A number of load forecasts have been performed, and the load forecast is based on ARIMA models and ANN structures. With the residuals from load forecasting, the risk indexes over different time periods and seasons are formed. Moreover, a new methodology using the standard deviation of load increment on evaluating the risk is proposed. In contrast with the standard forecasting method that relies on a sophisticated forecast procedure, the new approach provides a useful and fast method to evaluate the risk due to load forecast uncertainty for a variety of local demand profiles. Finally, the VAR methodology combined with the NETA system is applied to a local electricity supplier in the UK.