Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Forecasting and prediction applications in the field of power engineering

Booth, C.D. and McDonald, J.R. and McArthur, S.D.J. (2001) Forecasting and prediction applications in the field of power engineering. Journal of Intelligent and Robotic Systems, 31 (1-3). pp. 159-184. ISSN 0921-0296

Full text not available in this repository. (Request a copy from the Strathclyde author)


Within the field of power engineering, forecasting and prediction techniques underpin a number of applications such as fault diagnosis, condition monitoring and planning. These applications can now be enhanced due to the improved forecasting and prediction capabilities offered through the use of artificial neural networks. This paper demonstrates the maturity of neural network based forecasting and prediction through four diverse case studies. In each case study the authors have developed diagnostic, monitoring or planning applications (within the power engineering field) using neural networks and industrial data. The engineering applications discussed in the paper are: condition monitoring and fault diagnosis applied to a power transformer; condition monitoring and fault diagnosis applied to an industrial gas turbine; electrical load forecasting; monitoring of the refuelling process within a nuclear power station. For each case study the data sources, data preparation, neural network methods and implementation of the resulting application is discussed. The paper will show that the forecasting and prediction techniques discussed offer significant engineering benefits in terms of enhanced decision support capabilities.