Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Investigation of optical fibre amplifier loop for intracavity and ring down cavity loss measurements

Stewart, G. and Atherton, K. and Yu, Hongbo and Culshaw, B. (2001) Investigation of optical fibre amplifier loop for intracavity and ring down cavity loss measurements. Measurement Science and Technology, 12 (7). pp. 843-849. ISSN 0957-0233

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present the design and initial investigation of a fibre optical system which may be used both for intra-cavity and for ring-down measurements of absorption losses. The system consists of a fibre loop containing a length of erbium-doped fibre pumped at 980 nm, with gain adjustment below or above threshold for the two types of operation. The fibre loop is constructed from standard fibre optical components and includes a micro-optical gas cell. The intended application is for measurement of levels of trace gases which possess near-IR absorption lines within the gain bandwidth of the erbium fibre amplifier. We discuss the key issues involved in operation of the system and the level of sensitivity required. Our initial experimental investigations have demonstrated that ring-down times of several microseconds can be obtained, which can be altered through adjustment of the attenuation or gain factor of the loop. Gain control is one of the most important issues and we explain how this may be achieved.