Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Development of a new machine system for the forming of micro-sheet-products

Qin, Y. and Ma, Y. and Harrison, C.S. and Brockett, A. and Zhou, M. and Zhao, J. (2008) Development of a new machine system for the forming of micro-sheet-products. In: 11th ESAFORM 2008 Conference on Material Forming, 2008-04-23 - 2008-04-25.

[img]
Preview
PDF (strathprints006992.pdf)
strathprints006992.pdf

Download (568kB) | Preview

Abstract

Most of the developed micro-forming machines were based on standalone concepts which do not support efficient integration to make them fully automated and integrated. At present, material feeding in micro-forming is not of sufficient precision and reliability for high throughput manufacturing applications. Precise feeding is necessary to ensure that micro-parts can be produced with sufficient accuracy, especially in multi-stage forming, while high-speed feeding is a must to meet the production-rate requirements. Therefore, design of a new high-precision and high-speed feeder for micro-forming is proposed. Several possible approaches are examined with a view to establishing feasible concepts. Based on the investigation, several concepts for thin sheet-metal feeding for micro-forming are generated, they being argued and assessed with applicable loads and forces analysis. These form a basis of designing a new feeder.