Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A continuum model of gas flows with localized density variations

Dadzie, S.K. and Reese, J.M. and McInnes, C.R. (2008) A continuum model of gas flows with localized density variations. Physica A: Statistical Mechanics and its Applications, 387 (24). pp. 6079-6094. ISSN 0378-4371

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We discuss the kinetic representation of gases and the derivation of macroscopic equations governing the thermomechanical behavior of a dilute gas viewed at the macroscopic level as a continuous medium. We introduce an approach to kinetic theory where spatial distributions of the molecules are incorporated through a mean-free-volume argument. The new kinetic equation derived contains an extra term involving the evolution of this volume, which we attribute to changes in the thermodynamic properties of the medium. Our kinetic equation leads to a macroscopic set of continuum equations in which the gradients of thermodynamic properties, in particular density gradients, impact on diffusive fluxes. New transport terms bearing both convective and diffusive natures arise and are interpreted as purely macroscopic expansion or compression. Our new model is useful for describing gas flows that display non-local-thermodynamic-equilibrium (rarefied gas flows), flows with relatively large variations of macroscopic properties, and/or highly compressible fluid flows.