Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Stabilizing periodic orbits above the elliptic plane in the solar sail 3-body problem

Biggs, J.D. and McInnes, C.R. and Waters, T. (2008) Stabilizing periodic orbits above the elliptic plane in the solar sail 3-body problem. In: 59th International Astronautical Congress, 2008-09-29 - 2008-10-03.

[img]
Preview
PDF (strathprints006984.pdf)
strathprints006984.pdf

Download (595kB) | Preview

Abstract

We consider periodic orbits high above the ecliptic plane in the Elliptic Restricted Three-Body Problem where the third massless body is a solar sail. Periodic orbits above the ecliptic are of practical interest as they are ideally positioned for the year-round constant imaging of, and communication with, the poles. Initially we identify an unstable periodic orbit by using a numerical continuation from a known periodic orbit above the ecliptic in the circular case with the eccentricity as the varying parameter. This orbit is then used to construct a reference trajectory for the sail to track. In addition we illustrate an alternative method for constructing a periodic reference trajectory based on a time-delayed feedback mechanism. The reference trajectories are then tracked using a linear feedback regulator (LQR) where the control actuation is delivered by varying the solar sails orientation. Using this method it is shown that a 'near term' solar sail is capable of performing stable periodic motions high above the ecliptic.