Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Stabilizing periodic orbits above the elliptic plane in the solar sail 3-body problem

Biggs, J.D. and McInnes, C.R. and Waters, T. (2008) Stabilizing periodic orbits above the elliptic plane in the solar sail 3-body problem. In: 59th International Astronautical Congress, 2008-09-29 - 2008-10-03.

PDF (strathprints006984.pdf)

Download (595kB) | Preview


We consider periodic orbits high above the ecliptic plane in the Elliptic Restricted Three-Body Problem where the third massless body is a solar sail. Periodic orbits above the ecliptic are of practical interest as they are ideally positioned for the year-round constant imaging of, and communication with, the poles. Initially we identify an unstable periodic orbit by using a numerical continuation from a known periodic orbit above the ecliptic in the circular case with the eccentricity as the varying parameter. This orbit is then used to construct a reference trajectory for the sail to track. In addition we illustrate an alternative method for constructing a periodic reference trajectory based on a time-delayed feedback mechanism. The reference trajectories are then tracked using a linear feedback regulator (LQR) where the control actuation is delivered by varying the solar sails orientation. Using this method it is shown that a 'near term' solar sail is capable of performing stable periodic motions high above the ecliptic.