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Abstract 

This study proposes an analytical model for vibrations in a cracked rectangular plate as one of the results from a programme 

of research on vibration based damage detection in aircraft panel structures. This particular work considers an isotropic plate, 

typically made of aluminium, and containing a crack in the form of a continuous line with its centre located at the centre of the 

plate, and parallel to one edge of the plate. The plate is subjected to a point load on its surface for three different possible 

boundary conditions, and one examined in detail. Galerkin’s method is applied to reformulate the governing equation of the 

cracked plate into time dependent modal coordinates. Nonlinearity is introduced by appropriate formulations introduced by 

applying Berger’s method. An approximate solution technique, the method of multiple scales, is applied to solve the nonlinear 

equation of the cracked plate.  Results are presented in terms of natural frequency versus crack length and plate thickness, and 

the nonlinear amplitude response of the plate is calculated for one set of boundary conditions and three different load locations, 

over a practical range of external excitation frequencies.      

 

Overview 
Thin plate structures have gained special importance and 

notably increased application in recent years. Complex 

structures such as aircraft, ships, steel bridges, sea platforms 

etc., all use metal plates. For example, it has been observed 

that plate panels on the tips of aircraft wings are mainly under 

transverse pressure, and are often subjected to normal and 

shear forces which act in the plane of the plate. The plate may 

not behave as intended if it contains even a small crack or 

form of damage, and such small disturbances can then create a 

complete loss of equilibrium and cause failure. 

The literature has been reviewed for research on cracked 

plates under tension and bending. Khadem and Rezaee [1] 

introduced a new technique for vibration analysis of cracked 

plates and considered the effect of compliance due to bending 

only. Okamura et al. [2] obtained the lateral deflection, the 

load carrying capacity, and the stress intensity factor of a 

rectangular cross-section single-edge cracked column with 

hinged ends under compression. They compared an un- 

cracked column with a cracked column and examined the 

effect of a crack on the load carrying capacity. Lateral 

deflection decreased with the ratio of crack length to column 

width, and the ratio of column width to column length. The 

effect was generally small, if the crack was short and the 

column was long. In particular these authors considered the 

effect of compliance due to bending and ignored the effect of 

compliance due to rotation induced by the axial load. Khadem 

and Rezaee [3] established an analytical approach for damage 

in the form of a crack in a rectangular plate by the application 

of external loading for different boundary conditions. They 
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concluded from their results that the presence of a crack at a 

specific depth and depending upon its location, would affect 

each of the natural frequencies differently. Krawczuk et al. [4] 

applied a versatile numerical approach for the analysis of 

wave propagation and damage detection within cracked plates. 

Wu and Shih [5] theoretically analyzed the dynamic instability 

and nonlinear response of cracked plates subjected to periodic 

in-plane load. The results indicated that the stability behaviour 

and the response of the system are governed by the crack 

location of the plate, the aspect ratio of the plate, conditions of 

in-plane loading and the amplitude of vibration. Moreover, 

increasing the crack ratio i.e. the ratio of the crack length to 

the length of the edge parallel to the crack, and/or the static 

component of the in-plane load decreases the natural 

frequency of the system. Irwin [6] examined a part-through 

crack in a plate subjected to tension and derived a relation for 

the crack stress-field parameter and the crack extension force 

at the boundaries of a flat elliptical crack. Rice and Levy [7] 

employed two dimensional generalised plane stresses and used 

Kirchhoff’s plate bending theories with a continuously 

distributed line-spring to represent a part-through crack, and 

choose compliance coefficients to match those of an edge-

cracked strip in plane strain. The line of discontinuity was of 

length 2a and the plate was subjected to remote uniform 

stretching and bending loads along the far sides of the plate. 

These authors computed the force and moment across the 

cracked section to determine the stress intensity factor, and the 

solution to the problem was characterised in terms of the Airy 

stress function.  Their results showed that 
rs rs

K K  (where 

rs
K is the stress intensity factor for an all-over crack, and 

rs
K  

is the stress intensity factor of an edge crack in plane strain for 

the same relative depth 
o

l h , and for remote tensile or 

bending load) approaches unity with an increase in the ratio of 

crack length to plate thickness 2a h . Furthermore, at small 

values of relative depth 
o

l h , the relative changes of stress 

intensity factors approaches unity for small values of 2a h .  

The solutions obtained based on linear models are 

considered adequate for many practical and engineering 

purposes although it is recognized that linearized equations 

usually provide no more than a first approximation. Linearized 

models of vibrating systems are inadequate in cases where 

displacements are not small. In addition, problems treated by 

nonlinear theory exhibit new phenomena for example, the 

dependence of frequency of vibration on amplitude that cannot 

be predicted by means of linear theories. Moreover, an 

example of such a source of nonlinearity is a crack within a 

plate, which can lead to profound changes in the vibrational 

response of the system. In this study, much previous work has 

been considered together, leading to a proposal for a new 

analytical model for the vibration analysis of a cracked plate. 

In [8] the authors developed an approximate analytical 

solution for damage detection in an aircraft panel structure 

modelled as a cracked isotropic plate without the application 

of a load, essentially for free vibration. The literature does not 

appear to contain any substantial references to analytical 

models for cracked plates undergoing forced vibration. The 

work presented here considers classical plate theory and 

includes an arbitrarily located crack within a rectangular plate. 

The crack consists of a continuous line and certain simplifying 

assumptions are made in order to get an initial tractable 

solution to the vibration problem. Principally, the effects of 

rotary inertia and through-thickness shear stress effects are 

neglected. Berger’s formulation is used to generate the 

nonlinear term within the model differential equation of 

motion. An approximate analytical solution of the equation for 

the vibration in the cracked plate for given boundary 

conditions, is found by the method of multiple scales, 

followed by the presentation of some numerical results and 

conclusions. 

 
Governing Equation of the Rectangular Plate and 
Crack Term 

The classical form of the governing equation of 

rectangular plate is rigorously treated in [9-11]. Here, the 

equilibrium principle is followed for the derivation of the 

governing equation of the cracked rectangular plate, in which 

a crack is present at the centre and parallel to the x-direction of 

the plate, as depicted in Fig. 1, and consisting of a continuous 

line of length 2a. The following basic assumptions are 

summarized: 

 

1. The plate is made of a perfectly elastic, homogeneous, 

isotropic material and has a uniform thickness h which is 

considered small in comparison with its other dimensions. 

2. All strain components are small enough to allow Hooke’s 

law to hold. 

3. The normal stress component in the direction transverse 

to the plate surface is small compared with other stress 

components, and is neglected in the stress-strain 

relationship.  

4. Shear deformation is neglected in this case and it is 

assumed that sections taken normal to the middle surface 

before deformation remain plane and normal to the 

deflected middle surface of the plate. 

5. The effect of the rotary inertia, shear forces and in-plane 

force in the y-direction i.e. yn and xyn  are neglected to 

make the problem more tractable. 

 

Based upon these assumptions, the final version of the 

governing equation of the cracked plate takes the following 

form, 

 
24 4 4 2 2 2

4 2 2 4 2 2 2 2
2 .ρ

  ∂∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

y

x y z

Mw w w w w w
D h n n P

x x y y t x y y

(1) 

 

where 3 212(1 )D Eh υ= − , zP  is the load per unit area acting 

at the surface, ρ  is the density of the plate, xn  is the in-plane 

or membrane force, yM , and yn  are the moment and in-plane 

force per unit length due to inclusion of crack at the centre of 

the plate, respectively.  

 

In Eq. (1) two new terms, yM , and yn , and caused by the 

crack, are introduced by the application of the equilibrium 

principle based on classical plate theory. The formulation of 
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these crack terms is obtained from the Rice and Levy [7] 

model (in Eqs. (10) and (11)). The Rice and Levy approach is 

based on Kirchoff’s bending theory for thin plates, and the 

assumptions involved in this theory lead to important 

simplifications in the governing equations. Actually, the 

results are presented for the stress intensity factors in part-

through cracked plates, provided that the crack is not too deep. 

These stress relationship are used and then by making use of 

Eqs. (8) and (9), a new relationship for the force and moment 

caused by the crack has been developed, which is dealt in the 

following section. 

 

Later, zP  in Eq. (1) is replaced by a point load zP  based 

on the application of the appropriate delta function in Eq. (24) 

to make it compatible with the experimental configuration. 

Furthermore, in practice, it is straightforward to implement 

this type of loading. 

 

 
Crack Terms Formulation 

Rice and Levy [7] obtained an approximate relation for 

nominal tensile and bending stresses at the location of the 

crack. These two relations are taken after some rearrangement, 

and making use of the relationships within Eqs. (8) and (9) 

from which it can be deduced that 6rs rsm σ= . A 

representation of these stresses is given in Fig. 1. 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

Fig. 1 Line Spring model representing the bending and 
tensile stresses for a part-through crack of length 2a, after 
[7]  

        

( ) 2

2
,

6 (1 ) 2
rs rso o

tb tt

a

h a
σ σ

α α υ
=

+ − +
 (2) 

 

 

and, 
2

.

3 (3 )(1 ) 2
6

rs rso
obt
bb

a
m m

h a
α

α υ υ

=
 

+ + − +  
 

 
(3) 

 

We define rsσ and rsm as the nominal tensile and bending 

stresses respectively, at the crack location and on the surface 

of the plate, 
rs

σ and 
rs

m are the nominal tensile and bending 

stresses at the far sides of the plate, h  is the thickness of the 

plate, a  is the half-crack length, and o

bb
α , o

tt
α , o o

bt tb
α α=  are the 

non-dimensional bending compliance, stretching compliance 

and stretching-bending compliance coefficients at the crack 

centre respectively.  

 

This shows that the nominal tensile and bending stresses at 

the crack location can be regarded as a function of the nominal 

tensile and bending stresses at the far side of the plate. It is 

worth noting that Okamura et al. [2] and Khadem and Rezaee 

[3] also restricted their analysis to the effects of bending 

compliance. These three compliance coefficients depend upon 

the crack depth d  to plate thickness h  and vanish when 

0d = . It is shown in [7] that in general the compliance 

coefficient is a function of the ratio of crack depth to plate 

thickness. After suitable nondimensionalisation the 

compliance coefficients at the centre of the crack takes this 

form,  

 

 1.1547 ,o
λµ λµα α=  (4) 

 

where , ,b tλ µ =  are intermediate variables used in [7] for 

algebraic simplification. The appropriate compliance 

coefficients, λµα , may then be calculated from the following 

relation, noting that they are valid only for d hζ =  values 

within the range 0.1-0.7. In the present analysis, we take 

ζ = 0.6, leading to calculation of the compliance coefficients 

[1-2, 7] as follows, 

 

 

1 2 3 4
2

5 6 7 8

1.98 0.54 18.65 33.70 99.26
,

211.90 436.84 460.48 289.98
tt

ζ ζ ζ ζ
α ζ

ζ ζ ζ ζ

 − + − +
=  

− + − +  
 

(5)    

 

 

1 2 3 4
2

5 6 7 8

1.98 3.28 14.43 31.26 63.56
,

103.36 147.52 127.69 61.50
bb

ζ ζ ζ ζ
α ζ

ζ ζ ζ ζ

 − + − +
=  

− + − +  
 

(6) 

 

 

1 2 3 4
2

5 6 7 8

1.98 1.91 16.01 34.84 83.93
.

153.65 256.72 244.67 133.55
bt tb

ζ ζ ζ ζ
α α ζ

ζ ζ ζ ζ

 − + − +
= =  

 − + − + 
 

(7) 

 

This means that uniformly distributed tensile and bending 

stresses are at the two sides of the crack location, and these 

tensile and bending stresses can be expressed in term of tensile 

and bending force effects. Therefore, we can write the tensile 

and bending stresses at the far sides as [7],  

 

 

 / 2

/ 2

1
( , , ) ,

h

rs
rs rs

h

n
x y z dz

h h
σ τ

+

−

= = ∫  
(8) 

 

O  
x  

y  
rs

σ  

rs
σ  

2a 

rs
m  

rs
m  
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          / 2

2 2

/ 2

6 6
( , , ) ,

h

rs rs rs

h

m M z x y z dz
h h

τ

+

−

= = ∫  
(9) 

 

 

where , 1, 2r s =  are intermediate variables required for 

algebraic simplification. rsn and rsM are the force and moment 

per unit length in the y-direction at the far sides of the plate, 

respectively, and ( , , )rs x y zτ is the stress state.  

 

The force and moment were calculated from two-

dimensional plane stress-plate bending theory, with the 

cracked section represented as a continuous line spring having 

its compliance matched to that of the edge cracked strip in 

plane strain. Accordingly, we can write Eqs. (2) and (3) in the 

form of force and moment as,  

 

 

( ) 2

2
,

6 (1 ) 2
rs rso o

tb tt

a
n n

h aα α υ
=

+ − +
 (10) 

 

     

 

and, 
2

,

3 (3 )(1 ) 2
6

rs rso
obt
bb

a
M M

h a
α

α υ υ

=
 

+ + − +  
 

 (11) 

 

                

where rsn  and rsM are the force and moment per unit length 

in the y-direction at the crack location of the plate, 

respectively. 

 

It is evident from the work of Rice and Levy [7] that when 

two forces are acting on the plate element to stretch and bend 

it, the results of their work show that the Airy stress function 

satisfies the compatibility condition in a region where the 

body force field is zero.  Here, it is very useful to mention that 

the present theory and the model of the Rice and Levy are 

based on classical plate theory, therefore the force and 

moment obtained from Eqs (10) and (11) are the required 

terms and are added into the cracked plate model with a 

negative sign because damage causes a reduction in the overall 

stiffness of the plate structure, a phenomenon which can also 

be seen in the literature, such as the work of Khadem and 

Razaee [1,3], and Wu and Shih [5]. Therefore, we can write, 

  

 

( ) 2

2
,

6 (1 ) 2α α υ
≡ − = −

+ − +
y rs rso o

tb tt

a
n n n

h a
 (12) 

 

 

 

and, 
2

3 (3 )(1 ) 2
6

α
α υ υ

≡ − = −
 

+ + − +  
 

y rs rso
obt
bb

a
M M M

h a

 

(13) 

Substituting the values of yn  and yM from Eqs. (12) and (13) 

into the Eq. (1), so the governing equation of the plate with 

crack extends to the following form, 

  

  

( )

4 4 4 2 2

4 2 2 4 2 2

2

2

2

22

2

2

3 (3 )(1 ) 2
6

2
.

6 (1 ) 2

ρ

α
α υ υ

α α υ

 ∂ ∂ ∂ ∂ ∂
+ + = − + +  ∂ ∂ ∂ ∂ ∂ ∂ 

∂
−

  ∂
+ + − +  

 

∂
−

∂+ − +

x z

rs

o
obt
bb

rso o
tb tt

w w w w w
D h n P

x x y y t x

Ma

y
h a

a w
n

yh a

(14)

 

As the bending stresses at the far sides of the plate are defined 

by,  

 

 2 2

2 2
,

rs

w w
M D

y x
υ

 ∂ ∂
= − + 

∂ ∂ 
 (15) 

 

then Eq. (15) can be substituted into Eq. (14) to get the final 

form, 

 

 

( )

4 4 4 2 2

4 2 2 4 2 2

4 4

4 2 2

2

22

2

2

3 (3 )(1 ) 2
6

2
.

6 (1 ) 2

ρ

υ
α

α υ υ

α α υ

 ∂ ∂ ∂ ∂ ∂
+ + = − + +  ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂
+ +    ∂ ∂ ∂ + + − +  

 

∂
−

∂+ − +

x z

o
obt
bb

rso o
tb tt

w w w w w
D h n P

x x y y t x

a w w
D

y y x
h a

a w
n

yh a

(16) 

 

General Solution for a Vibrating Cracked Plate 
Now we consider the rectangular plate of Fig. 2, of length 

1l  in the x-direction and 
2l  in the y-direction containing a 

crack which consists of a continuous line of length 2a located 

at the centre and parallel to the x-direction of the plate.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

Fig. 2 Isotropic Plate loaded by concentrated force and 
small crack of length 2a at the centre, and parallel to the   
x -axis 

y 
,z w
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A point load zP  based on the application of the appropriate 

delta function (in Eq. (24)) is introduced at the location of 

( , )
o o

x y . 

 

Leissa [9] studied a wide range of rectangular plates with 

different boundary conditions, producing seminal data on 

natural frequencies and mode shapes. Many approaches have 

been adopted from time to time to form the general solution 

for vibrating plate. Yagiz and Sakman [12] observed the 

dynamic response of a bridge modelled as an isotropic plate 

under the effect of a moving load with all sides simply 

supported. They considered a vehicle in the form of a seven 

degree of freedom system as the moving load. A mathematical 

model was obtained by the use of Lagrange’s formulation and 

was used to investigate the dynamic response of the bridge 

and vehicle. Au and Wang [13] studied the dynamic responses 

in terms of sound radiation from forced vibration of an 

orthotropic plate with the effects of moving mass, damping 

coefficient, boundary conditions. Fan [14] analyzed the 

transient vibration and sound radiation of a rectangular plate 

with visco-elastic boundary supports subjected to impact 

loading and obtained the sound radiation pressure in the time 

and frequency domain by the Rayleigh integral. 

Mukhopadhyay [15] presented a numerical method for the 

solution of rectangular plates having different edge conditions 

and loadings. Young [16] investigated and calculated the set 

of functions, which define the normal modes of vibration of a 

uniform beam and obtained the solution for the plate problem 

with different boundary conditions by the use of Ritz method. 

Stanišië [17] and Nagaraja and Rao [18] obtained an 

approximate solution to find the dynamical behaviour of 

rectangular plates for different boundary conditions.  

 

The solution for the governing differential equation of the 

plate subjected to transverse loading is obtained by defining 

the characteristic functions depending upon the boundary 

conditions of the plate. The basic model for solution is the one 

in which all edges are simply supported, while for other 

boundary conditions the principle of superposition holds 

[11,19].  The most general form of the transverse deflection of 

the plate is 

 

 
1 1

( , , ) ( ),
mn m n mnn m

w x y t A X Y tψ
∞ ∞

= =
=∑ ∑  (17) 

 

 

where
m

X and
n

Y are the characteristic or modal functions of 

the cracked rectangular plate,
mn

A is an, as yet, arbitrary 

amplitude and ( )
mn

tψ is the time dependent modal coordinate. 

 

The appropriate expressions for the characteristic or modal 

functions are given below and satisfy the stated boundary 

conditions of the plate. For all cases 
1l and 

2l are the lengths of 

the sides of the plate along the x and y directions respectively. 

Three boundary condition cases are given next. 

 

Boundary Condition 1. Two adjacent edges are clamped 

while the other two edges are free – CCFF [9,16,18,19] 

1 1 1 1

cos cosh sin sinh ,m m m m

m m

x x x x
X

l l l l

λ λ λ λ
γ

        
= − − −        

         
 

(18)  

 

2 2 2 2

cos cosh sin sinh .n n n n

n n

y y y y
Y

l l l l

λ λ λ λ
γ
        

= − − −        
         

 

(19)  

 

The 
,m n

λ and the 
,m n

γ are mode shape constants and can be 

found in standard reference text such as [9,19].  

 

Boundary Condition 2. Two adjacent edges are clamped 

while the other two edges are freely supported – CCSS [20] 

 

1 1
1 1 1 1

1 3
sin sin cos cos ,

2 2 2 2
m m m

m x m x m x m x
X

l l l l

π π π π∞ ∞

= =

 
= = − 

 
∑ ∑

                                                                                          (20) 

 

1 1
2 2 2 2

1 3
sin sin cos cos .

2 2 2 2
n

n n

n y n y n y n y
Y

l l l l

π π π π∞ ∞

= =

 
= = − 

 
∑ ∑  

(21)             

Boundary Condition 3. All sides are simply supported – 

SSSS [9,10,12] 

 

 

1
1

sin ,
m m

m x
X

l

π∞

=

 
=  

 
∑  (22) 

 

 

1
2

sin .
n n

n y
Y

l

π∞

=

 
=  

 
∑  (23) 

                          

The lateral load zP  at position (
o

x ,
o

y ) can be readily 

expressed as follows [14]  

 

 ( ) ( ) ( )
z o o o

P P t x x y yδ δ= − −  (24) 

 

Substituting the definition of ( , , )w x y t  from Eq. (17) and 
z

P  

from Eq. (24) into Eq. (16), we get, 

 

( )

4 4 4 2

4 2 2 4 2

2 2

2 22

4 4

4 2 2

( )
2 ( )

2
( ) ( )

6 (1 ) 2

2

3 (3 )(1 ) 2
6

ψ
ψ ρ

ψ ψ
α α υ

υ ψ
α

α υ υ

 ∂ ∂ ∂ ∂
+ + = −  ∂ ∂ ∂ ∂ ∂ 

∂ ∂
+ −

∂ ∂+ − +

 ∂ ∂
+ +    ∂ ∂ ∂ + + − + 

 

m m n n
n m mn mn m n

m n
x n mn rs m mno o

tb tt

n m n
m mno

obt
bb

X X Y Y t
D Y X A t h A X Y

x x y y t

X a Y
n Y A t n X A t

x yh a

a Y X Y
D X A

y y x
h a

0

( )

( ) ( ) ( ).δ δ+ − −o o

t

P t x x y y

(25) 

  

Berger [21] determined the deflection of a plate by 

neglecting the strain energy due to the second invariant of the 
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middle surface strains and when the deflection is of the order 

of magnitude of the thickness of the plate. This can be used to 

obtain forms for the in-plane forces xn  and rsn  per unit length 

in the x and y direction respectively, and applies theory 

predominantly based on aspect ratios equal to 1, 1.5, 2, and 

infinity. Berger showed that this approach works well for 

combinations of simply supported and clamped boundary 

conditions, as shown previously. We note in passing that Wah 

[22] and Ramachandran and Reddy [23] also applied Berger’s 

formulation efficiently for analysing the nonlinear vibrations 

of undamped rectangular plates.  

  

To make the form of the in-plane forces, the middle surface 

strains in the x and y directions can be given by [11], 

 

 2
1

,
2

x

u w

x x
ε

∂ ∂ 
= +  ∂ ∂ 

 
(26) 

 

                      

 2
1

,
2

y

v w

y y
ε

 ∂ ∂
= +  

∂ ∂ 
 (27) 

 

where u and v are the displacements in the x and y directions 

respectively. 

 

Accordingly, we can write the in-plane forces as, [11], 

 

 
( )2

,
1

x x y

Eh
n ε υε

υ
= +

−
 (28) 

 

 
( )2

.
1

rs y x

Eh
n ε υε

υ
= +

−
 (29) 

 

 

Substituting Eqs. (26) and (27) into Eqs. (28) and (29), we get 

  

 222
1 1

,
12 2 2

xn h u v w w

D x y x y
υ υ

 ∂ ∂ ∂ ∂ 
= + + +   

∂ ∂ ∂ ∂   
 (30) 

           

and therefore for y,  

 

 2 22
1 1

.
12 2 2

rsn h v u w w

D y x y x
υ υ

 ∂ ∂ ∂ ∂ 
= + + +   ∂ ∂ ∂ ∂  

 (31) 

 

We multiply Eqs. (30) and (31) by dxdy and integrate over the 

plate area, and then impose the conditions that u and v vanish 

at the external boundaries and around the crack due to 

symmetry, leading to, 

 

 1 2 222
1 2

0 0

1
,

12 2

l l

xn h l l w w
dxdy

D x y
υ

  ∂ ∂  = +   
∂ ∂     

∫ ∫  (32) 

 

 

and, 
1 2 2 22

1 2

0 0

1
.

12 2

l l

rsn h l l w w
dxdy

D y x
υ

  ∂ ∂  = +   
∂ ∂    

∫ ∫  (33) 

 

Applying the definition of ( , , )w x y t from Eq. (17) we get,   

 

 2 2
1 ( )

mnx mn mnn DF A tψ= , (34) 

 

where  

 

1 2 22
2 2

1 2 1 1
1 2 0 0

6
,

n

l l

m n
mn m

n m

X Y
F Y X dxdy

x yh l l
υ

∞ ∞

= =

  ∂ ∂  = +   ∂ ∂     
∑ ∑ ∫∫  

                                                                                              (35)  

 

and, 2 2
2 ( ),

mnrs mn mnn DF A tψ=  (36) 

 

where

1 2 2 2
2 2

2 2 1 1
1 2 0 0

6
.

n

l l

n m
mn m

n m

Y X
F X Y dxdy

y xh l l
υ

∞ ∞

= =

  ∂ ∂  = +   
∂ ∂    

∑ ∑ ∫∫  

                                                                                              (37)  

 

Substituting the in-plane forces xn  and rsn  from Eqs. (34) and 

(36) into Eq. (25), multiplying each part of Eq. (25) by the 

modal function 
m

X  and 
n

Y  for one of the three example 

boundary conditions mentioned above, and then integrating 

over the plate area, we find that,  

 

 3( ) ( ) ( ) .mn mn mn mnM t K t G t Pψ ψ ψ+ + =ɺɺ  (38) 

 

where    

 

 
1 2

2 2

1 1
0 0

,
m n

l l

mn mnn m

h
M A X Y dxdy

D

ρ ∞ ∞

= =
= ∑ ∑ ∫ ∫  (39) 

            

( )1 2

1 1
0 0

2

2
,

3 (3 )(1 ) 2
6

m n

n

iv iv
n m n m

l l iv
m n m

mn mn m nn m
o

obt
bb

X Y X Y Y X

a X Y Y X
K A X Y dxdy

h a

υ

α
α υ υ

∞ ∞

= =

 ′′ ′′+ +
 
 ′′ ′′ + = − 

  + + − +   
  

∑ ∑ ∫ ∫                     

(40) 

( )

1 2

2
1

3 2
21 1

0 0 2

,2

6 (1 ) 2α α υ

∞ ∞

= =

 ′′−
 
 ′′=
 +
 + − + 
 

∑ ∑ ∫ ∫
n

mn m

mn m m
l l

mn mn n nn m

o o
tb tt

F X X Y

G A dxdyaF X Y Y

h a

 

(41) 

 

The integral of the delta function is given by 

0( ) ( ) ( )m m oX x x x dx X xδ

∞

−∞

− =∫ . Therefore, the force term in 

Eq. (38) can be expressed as 
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( )

,o
mn mn

P t
P Q

D
=  

(42) 

 

 

where 
0 0( ) ( ).mn m nQ X x Y y=  (43) 

 

Equation (38) is in the form of the well known Duffing 

equation containing a cubic nonlinear term, and can be re-

stated as 

 

 
2 3

( ) ( ) ( ) ( ) ,
mn

mn
mn ot t t P t

D

λ
ψ ω ψ β ψ+ + =ɺɺ  (44) 

 

where   

 
2

,
mn

mn

mn

K

M
ω =  (45) 

                               

 
,mn

mn

mn

G

M
β =  (46) 

 

 

 ,mn
mn

mn

Q

M
λ =  (47) 

 

and  mnω  is the natural frequency of the cracked rectangular 

plate. 

 

Now if it is assumed that the system is under the influence 

of weak classical linear viscous damping µ , then the equation 

of the model of the rectangular cracked plate becomes, 

 

 
2 3

( ) 2 ( ) ( ) ( ) ( ).
mn

mn
mn ot t t t P t

D

λ
ψ µψ ω ψ β ψ+ + + =ɺɺ ɺ  (48) 

 

Letting the load be harmonic, such that,  

 

 ( ) coso mnP t p t= Ω  (49) 

 

leads to, 

 

 
2 3

( ) 2 ( ) ( ) ( ) cos .
mn

mn
mn mnt t t t p t

D

λ
ψ µψ ω ψ β ψ+ + + = Ωɺɺ ɺ  (50)

  

Instead of using the excitation frequency Ωmn  as a parameter, 

we introduce a detuning parameter, mnσ , which quantitatively 

describes the nearness of Ωmn  to mnω  and this is a case of 

primary resonance. This has the advantage of clarifying 

identification of the terms in the governing equation at first 

order perturbation that lead to secular terms. Accordingly we 

write, [24],  

 

 ω εσΩ = +mn mn mn  (51) 

 

where ε  is an arbitrarily small perturbation parameter. 

 

To obtain a uniformly valid approximate solution to this 

problem it is necessary to order the cubic term, the damping, 

and the excitation. To accomplish this we choose to set the 

following to O(ε)
1 
, 

 

 , ,  .mn mn p pµ εµ β εβ ε= = =  (52) 

                                                                                                                                   

After substituting Eqs. (51) and (52) into Eq. (50), it becomes 

as follows,  

 

2 3
( ) 2 ( ) ( ) ( ) cos( ) .

mn

mn
mn mn mnt t t t p t

D

λ
ψ εµψ ω ψ εβ ψ ε ω εσ+ + + = +ɺɺ ɺ

                            (53) 

 

This introduces damping, the cubic nonlinearity, and the 

excitation to first order perturbation, which is considered to be 

in line with the appropriate experimental configuration, and 

other work on weakly nonlinear vibrating systems [24-27]. It 

is important to note here that for Duffing equations the 

coefficient of the cubic term, in this case 
mnεβ , can be 

numerically positive or negative, leading to overhangs of the 

response curve in the frequency domain to the right or left, 

respectively. 

 
The Method of Multiple Scales 

The method of multiple scales is well discussed in the 

seminal work of Nayfeh and Mook [24] and also in the well 

known books of [25], and [26]. Cartmell et al. [27] reviewed 

the multiple scales method as applied to weakly nonlinear 

dynamics of mechanical systems. For the method of multiple 

scales, the solution of the equation is approximated by a 

uniformly valid expansion of the form,  

    

 2
1 1 1( , ) ( , ) ( , ) ( ),mn o mn o mn ot T T T T oψ ε ψ εψ ε= + +  (54) 

    

where 1( , )omn oT Tψ  and 1 1( , )mn oT Tψ  are functions yet to be 

determined. Independent time scales are introduced where oT  

is nominally considered as fast time and 1T  as slow time, such 

that, oT t=  and 1T tε= . We can express the excitation in term 

of oT  and 1T  as  

 

 ( )1( ) cos .o mn o mnP t p T Tε ω σ= +  (55) 

Substituting the expansion of Eq. (54) and the excitation term 

from Eq. (55) into Eq. (53), we get, 

 

[ ] [ ]

{ }
( )

1 1

1

2 2 2 2 2 2
1 1 1

2 2 2
1 1 1

2 2 2 2 3 3 2
1

1

2 2

( ) 2 2 2 ( )

( ) ( )

cos .

o o

mn mn mn
o mn mn

o o mn o mn

o o mn o mn

o mn mn mn

mn
mn o mn

D D D D D D D D

o D D D D o

o o

p T T
D

ε ε ψ ε ε ε ψ

ε εµ ε ψ ε µ ε ψ εµ ε

ω ψ εω ψ ω ε εβ ψ εψ ε

λ
ε ω σ

   + + + + +
   

+ + + + + +

+ + + + + +

= +

                                                                                             (56) 

Separating terms of like order ε  yields, to order ε
o
: 
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 2 2 0,
o o mn mn o mnD ψ ω ψ+ =  (57) 

 

and to order ε
1
: 

 

( )

2 2 3
1 1 1

1

2 2

cos .

mn
o o mnmn mn o o mn o o mn mn

mn
mn o mn

D D D D

p T T
D

ψ ω ψ ψ µ ψ β ψ

λ
ω σ

+ = − − −

+ +
 

(58) 

 

The higher orders of ε
2
, ε

3
 and so on, may be neglected 

because higher order perturbation equations will yield 

negligible corrections for the problem as set up here. The 

general solution of Eq. (57) can be written as 

 

 
1 1( ) ( ) ,mn o mn oi T i T

o mn B T e B T e
ω ωψ −= +  (59) 

 

where B  is an unknown complex amplitude and B  is the 

complex conjugate of B . This amplitude will be determined 

by eliminating the secular terms from 
1 mnψ . Substituting the 

solution from Eq. (59) into Eq. (58), we get, 

 

{ }
{ }

{ } ( )

2 2
1 1 1 1 1

1 1

3

1 1 1

2 ( ) ( )

2 ( ) ( )

( ) ( ) cos ,

mn o mn o
mn

o

mn o mn o

mn o mn o

i T i T
mn mn o

i T i T
o

i T i T mn
mn mn o mn

D D D B T e B T e

D B T e B T e

B T e B T e p T T
D

ω ω

ω ω

ω ω

ψ ω ψ

µ

λ
β ω σ

−

−

−

+ = − +

− +

− + + +

      

(60) 

 

which, after dropping the argument 1T  in the complex 

amplitudes, leads to the following, 

 

{ }

{ }

( )

2 2
1 1 1

33 33

1

2

2
3

cos .

mn o mn o
mn

o

mn o mn omn o

mn o mn omn o

i T i T
mn mn mn mn

i T i Ti T
mn

mn i T i Ti T
mn

mn
mn o mn

D iD Be Be

B e B eBe
i

BB Be BeAe

p T T
D

ω ω

ω ωω

ω ωω

ψ ω ψ ω ω

ω
µ β

ω

λ
ω σ

−

−

−−

+ = − −

   +   − −   + +−     

+ +

 

(61) 

 

Expressing ( )1cos mn o mnT Tω σ+  in complex form, we get, 

 

1

1
2 2

1 1 2

33

2 2

3
2

,

mn o

o mn

mn o

mn mn
i T

mn mn mn i Tmn
mn

i T
mn

i D B i B

D e
B B pe

D

B e cc

ω
σ

ω

ω µω

ψ ω ψ λ
β

β

− − 
 + =
 − +
  

− +

   

       (62) 

 

where cc denotes the complex conjugate of the preceding 

terms. Any particular solution of Eq. (62) can have secular 

terms containing the factor oi T
oT e

ω  unless 1 0D B = . To 

eliminate the secular terms from Eq. (62), we must put,  

 
12

12 2 3 0.
2

mni Tmn
mn mn mni D B i B B B pe

D

σλ
ω µω β− − − + =  (63) 

 

In solving Eq. (63), it is convenient to write the complex 

amplitude B  in the polar form, 
1

2

i
B be

α= ,                       (64)      

 

where b  and α  are real amplitude and phase functions of 1T  

respectively. Substituting Eq. (64) into Eq. (63), we get, 

 

 
3

1 1

3

8

[cos( ) sin( )] 0,
2

mn
mn mn mn

mn
mn mn

b i b i b b

p T i T
D

β
ω α ω ω µ

λ
σ α σ α

′ ′− − −

+ − + − =

 (65) 

 

where the prime denotes the derivative with respect to 1T . 

Now, separating the result into real and imaginary parts, we 

obtain,   

 
1sin( ),

2

mn
mn

mn

b b p T
D

λ
µ σ α

ω
′ = − + −  (66) 

 

 3

1

3
cos( ).

8 2

mn mn
mn

mn mn

b
b p T

D

β λ
α σ α

ω ω
′ = − −  (67) 

 

Equations (66) and (67) can be transformed into an 

autonomous system i.e. one in which 1T  does not appear 

explicitly, by letting,  1 .mnTκ σ α= −                                   (68)  

 

Substituting Eq. (68) into Eqs. (66) and (67), we get, 

 

 
sin ,

2

mn

mn

b b p
D

λ
µ κ

ω
′ = − +  (69) 

 

 33
cos .

8 2

mn mn
mn

mn mn

b
b b p

D

β λ
κ σ κ

ω ω
′ = − +  (70) 

 

In the case of steady-state motion 0b κ′ ′= ≈ , and this 

corresponds to the singular points of Eqs. (69) and (70); that 

is,  

 

 
sin ,

2

mn

mn

b p
D

λ
µ κ

ω
=  (71) 

 

 3
3

cos .
8 2

mn mn
mn

mn mn

b
b p

D

β λ
σ κ

ω ω
− + = −  (72) 

                  

Squaring and adding these equations, we obtain, 

 

 2 22
2 2 2

2 2

3
.

8 4

mnmn
mn

mn mn

b
b p

D

λβ
µ σ

ω ω

  
 + − =     

 (73) 
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a [m] 

ω
m

n
  
[r

ad
/s

] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is then possible to rearrange Eq. (73) to give the amplitude 

of the response b  as a function of the detuning parameter 

mnσ  and the amplitude of the excitation op and this is the 

frequency-response equation, as follows, 

 

 22
2 2

2 2 2

3
.

8 4

mnmn
mn

mn mn

b
p

b D

λβ
σ µ

ω ω
= ± −  (74) 

 

Numerical Results and Discussion 
In this section the results are presented as functions of 

frequency, half-crack length and plate thickness. Figure 3 

shows the plot of amplitude, b  as a function of mnσ  for given 

µ  and p  in the form of a frequency-response curve. Each 

point on this curve corresponds to a singular point. To draw 

such a curve, one solves for mnσ  in terms of b . The material 

properties of aluminium have been considered for different 

cases of half-crack length i.e. E = 7.03 x 10
10 

N/m
2
,                 

ρ = 2660 kg/m
3
, ν = 0.33, and damping factor, µ  = 0.08 while 

the geometric values of the plate are l1 = 0.5 m, l2 = 1 m,         

h = 0.01 m and p = 10 N is the load acting upon the surface of 

the plate at different points. The effect of changing the 

position of the load is shown in Fig. 3. The natural frequencies 

without and with the crack for different boundary conditions 

and aspect ratios are tabulated in Table 1.  

 

 
 
 

 

Fig. 3 The amplitude of the response as a function of the 
detuning parameter [rad/s] and the point load at different 
locations [m] of the plate element. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It may be seen from Table 1 that the presence of the 

(shown here as a deliberately large) crack at the centre of the 

plate significantly influences the natural frequency of the first 

mode of the plate, in all three cases. In the subsequent section 

attention will be focused on the case for which two adjacent 

edges are clamped while the other two edges are free (CCFF), 

and the results are shown for the first mode only.  Although it 

cannot be easily shown in Fig. 3 due to the necessary scaling 

of the plot, increasing the half-crack length from 0.05 m to 

0.125 m introduces small changes to the degree of nonlinear 

overhang in the softening direction, with some attendant 

change in the modal natural frequency. It has also been 

observed that changing the location of the load on the plate 

slightly affects the global nonlinearity of the system, as shown 

in Fig. 3 and evidenced by the increasingly wide nonlinear 

region as the excitation location moves closer to the 

unsupported corner.  

 

 

 
     

 

Fig. 4 Plate first mode natural frequency as a function of 
half-crack length   

Figure 4 shows the decrease in the natural frequency as we 

go on to increase the half-crack length for the same parameters 

as considered earlier. These changes are very small for small 

half-crack lengths, as one would expect. Moreover, the natural 

frequency is also influenced if the geometry of the plate is 

changed, in particular its length and thickness, in addition to 

the effect of the half-crack length. Similarly, it may be seen 

from Fig. 5 that by increasing the thickness of the plate the 

natural frequency of the first mode also increases for different 

values of half-crack length. This means that this natural 

frequency is directly related to the thickness of the plate. The 

theory presented in this paper currently holds only for a plate 

     Table 1. Natural frequencies of cracked plate model for different boundary conditions and aspect ratios 

Lengths of the  sides 

of the plate 

Two adjacent edges clamped, the 

other two free (CCFF) 

Two adjacent edges clamped, the other 

two simply supported (CCSS) 

All edges simply supported 

(SSSS) 

First mode natural frequency, ωmn [rad/s] for a half crack length, a = 0.05 [m] 
l1 [m] l2 [m] 

un-cracked cracked un-cracked cracked un-cracked cracked 

1 1 80.462 70.559 445.666 403.779 77.580 71.119 

0.5 1 231.061 227.611 1161.770 1138.530 193.951 189.581 

0.5 0.5 321.849 282.237 1782.660 1615.120 310.322 284.475 

 

       (
ox ,

oy ) = (0.375, 0.375) 

- - - ( ox , oy ) = (0.375, 0.50) 

---- (
o

x ,
o

y ) = (0.375, 0.75) 

σmn  [rad/s] 

b
 [

m
] 
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h [m] 

ω
m

n
  
[r

ad
/s

] 
b

N
L
/b

L
  

σmn  [rad/s] 

with a crack at the centre and defined by a continuous line 

model. Results of this sort could equally be obtained for the 

cases of CCSS and SSSS, but space limitations currently 

preclude that. 

 

 

 
 
 

Fig. 5 Plate first mode natural frequency as a function of 
the thickness of the plate for the half-crack length 0.05 m     

It is also instructive to note that if the cubic nonlinearity 

mnβ  is set to zero then the problem is linearized, but in the 

case of the nonlinear problem the significant effect of 

including this term is apparent from the numerical results 

depicted in Fig. 6. It can be seen in Fig. 6 that the ratio of the 

nonlinear solution amplitude (where mnβ is set to zero) is very 

large for negative detuning. This exactly emulates the 

softening nonlinear characteristic shown in Fig. 4. It can be 

seen that this ratio reduces close to unity for zero and positive 

detuning, again fully in line with the softening characteristic 

observable in Fig. 3. In the Figure bNL is the nonlinear 

amplitude and bL is the corresponding linear amplitude. 

 

 

 
 

 

Fig. 6 Comparison between linear and nonlinear model of 
the cracked rectangular plate     

 

Orientation of the crack at some angle will change the 

model because there will be more than two components of the 

crack geometry, one for tensile loading and one for bending 

along the plate element. Here it is assumed that the crack is 

parallel to the x-direction of the plate.  

 
 

Conclusions  
This research presents a new analytical model for the 

vibration analysis of cracked plates subjected to transverse 

loading at some specified position with different sets of 

boundary conditions. Berger’s formulation is effectively 

applied to make the governing equation for vibration of a 

cracked plate nonlinear and in the form of a Duffing equation. 

It has been found that for a square plate with the CCFF 

boundary conditions there is an approximately 12% reduction 

in natural frequency in the presence of a large centrally 

located crack of length 0.1 m. However, the reduction in the 

value of natural frequency is lower for other plate aspect ratios 

and linear and nonlinear results tend to coalesce for very low 

amplitude ratios. 

Finally, it is concluded that the decrease in the natural 

frequency when there is a crack present may substantiate use 

of the model in constructing a vibration based analysis 

methodology for plate structures and for further development 

of vibration based health monitoring. Further work is under 

way to extend the theory of this paper to cracks in arbitrary 

locations and orientations. 
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